Skip to main content

The Prototype of an Unmanned Underwater Vehicle – Stability and Maintain a Specified Course

  • Chapter
Innovative Control Systems for Tracked Vehicle Platforms

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 2))

  • 1688 Accesses

Abstract

The paper presents the modules of the control system remotely operated unmanned underwater vehicle used to stabilize the exchange rate and maintain the direction of motion. The authors present a simple control algorithms, and presented the verification of the assumed conditions of a real object. The control algorithms used information from the accelerometers, pressure sensors and an electronic compass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyrcz, C., Grabiec, D., Olejnik, A.: Identyfikacja wraku “Engels” - przykladem wykorzystania mozliwosci wspolczesnego hydrograficznego sprzetu pomiarowego do badania wrakow i zanieczyszczen na morzu, Konferencja Morska ”Aspekty bezpieczenstwa nawodnego i podwodnego oraz lotow nad morzem”, Gdynia, pp. 51–56 (2004)

    Google Scholar 

  2. Christ, R.: ROV Manual. Butterworth Heinemann, Oxford (2007)

    Google Scholar 

  3. Refsnes, J.E., Sorensen, A.J.: Design of control system of torpedo shaped ROV with experimental results. In: MTTS/IEEE TECHNO-OCEAN, OCEANS 2004, vol. 1, pp. 264–270 (2004)

    Google Scholar 

  4. Ming-Chung, F., Yu-Lun, H.: The simulation of the ROV motion with anti-pitch control in uniform current. In: Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, pp. 120–125 (2007)

    Google Scholar 

  5. Kinsey, J.C., Whitcomb, L.L.: In Situ Alignment Calibration of Attitude and Doppler Sensors for Precision Underwater Vehicle Navigation: Theory and Experiment. IEEE Journal of Oceanic Engineering 32(2), 286–299 (2007)

    Article  Google Scholar 

  6. Dai, J., Zhao, X., Tan, M.: Fuzzy logic control in autonomous ROV navigation. In: IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, TENCON 2002, vol. 3, pp. 1566–1569 (2002)

    Google Scholar 

  7. Sciegienka, P.: Ukad sterowania bezzaogowego pojazdu podwodnego, praca magisterska, Gliwice (2009)

    Google Scholar 

  8. Sakagami, N., Kanayama, T., Ueda, T., Hashizume, H., Shibata, M., Onishi, H., Murakami, S., Kawamura, S.: Design and development of an attitude control system for a human-sized ROV. In: 11th International Conference on Control Automation Robotics and Vision (ICARCV), pp. 2141–2146 (2010)

    Google Scholar 

  9. Jodkowski, B., Sydor, K.: Wstep do uzytkowania modeli GP2D12 iGP2Y0A02, Kolo Naukowe Robotykow, Wrocaw (2006)

    Google Scholar 

  10. Czajewski, J.: Nawigacja zeglarska, wydanie 2; wyd. WK, Warszawa (1986)

    Google Scholar 

  11. Heping, L., Zhenbang, G., Min, L.: Sliding mode control of ROV based on RBF neural networks adaptive learning. In: 3rd International Conference on Intelligent System and Knowledge Engineering, pp. 590–594 (2008)

    Google Scholar 

  12. Savaresi, S.M., Previdi, F., Dester, A., Bittanti, S., Ruggeri, A.: Modeling, identification, and analysis of limit-cycling pitch and heave dynamics in an ROV. IEEE Journal of Oceanic Engineering 29(2), 407–417 (2004)

    Article  Google Scholar 

  13. Inoue, T., Suzuki, H., Shimamura, T., Nakajima, K., Shioji, G.: Experimental research on horizontal rotation of ROV induced by external forces near sea surface. OCEANS, 1–6 (2008)

    Google Scholar 

  14. Heping, L., Zhenbang, G.: Disturbance Fuzzy Approach-based Sliding Mode Control on the Working Attitude Adjusting Device of ROV. In: International Asia Conference on Informatics in Control, Automation and Robotics, pp. 235–239 (2009)

    Google Scholar 

  15. HarsamizadehTehrani, N., Heidari, M., Zakeri, Y., Ghaisari, J.: Development, depth control and stability analysis of an underwater Remotely Operated Vehicle (ROV). In: 8th IEEE International Conference on Control and Automation, pp. 814–819 (2010)

    Google Scholar 

  16. Massimo, C.: Laser-Triangulation Optical-Correlation Sensor for ROV Slow Motion Estimation. IEEE Journal of Oceanic Engineering 31(3), 711–727 (2006)

    Article  Google Scholar 

  17. Massalski, J., Massalska, M.: Fizyka dla inzynierów cz 1. WNT, Warszawa (2006)

    Google Scholar 

  18. Jaskot, K., Babiarz, A.: Uklad inercyjny do pomiaru orientacji obiektow. Przeglad Elektrotechniczny 86(11a), 323–333 (2010)

    Google Scholar 

  19. Jedrasiak, K., Daniec, K., Nawrat, A.: The Low Cost Micro Inertial Measurement Unit. In: Industrial Electronics and Applications (ICIEA), pp. 403–408 (2013)

    Google Scholar 

  20. Bereska, D., Jędrasiak, K., Daniec, K., Nawrat, A.: Gyro-Stabilized Platform for Multispectral Image Acquisition. In: Nawrat, A., Kuś, Z. (eds.) Vision Based Systems for UAV Applications. SCI, vol. 481, pp. 115–121. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Daniec, K., Iwaneczko, P., Jędrasiak, K., Nawrat, A.: Prototyping the Autonomous Flight Algorithms Using the Prepar3D Simulator. In: Nawrat, A., Kuś, Z. (eds.) Vision Based Systems for UAV Applications. SCI, vol. 481, pp. 219–232. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Babiarz, A., Bieda, R., Jędrasiak, K., Nawrat, A.: Machine Vision in Autonomous Systems of Detection and Location of Objects in Digital Images. In: Nawrat, A., Kuś, Z. (eds.) Vision Based Systems for UAV Applications. SCI, vol. 481, pp. 3–25. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Bereska, D., Daniec, K., Fraś, S., Jędrasiak, K., Malinowski, M., Nawrat, A.: System for Multi-Axial Mechanical Stabilization of Digital Camera, Vision Based Systems for UAV Applications. In: Nawrat, A., Kuś, Z. (eds.) Vision Based Systems for UAV Applications. SCI, vol. 481, pp. 177–189. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. http://www.seaeye.com/products.html

  25. http://www.ifremer.fr/fleet/systemessm/engins/victor.html

  26. http://www.whoi.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Jaskot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jaskot, K., Ściegienka, P., Nawrat, A.M. (2014). The Prototype of an Unmanned Underwater Vehicle – Stability and Maintain a Specified Course. In: Nawrat. M, A. (eds) Innovative Control Systems for Tracked Vehicle Platforms. Studies in Systems, Decision and Control, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-04624-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04624-2_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04623-5

  • Online ISBN: 978-3-319-04624-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics