Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 884))

  • 1565 Accesses

Abstract

This chapter is devoted to applications of EGOE(1+2) and EGOE(1+2)-s to nuclei and mesoscopic systems. For example, simple applications to quantum dots and small metallic grains include: (i) delay in Stoner instability due to random interactions; (ii) odd-even staggering in ground state energies; (iii) distribution of conductance peak spacings. Similarly, the spin dependent chaos markers provide a stronger basis for statistical nuclear spectroscopy and presented in this topic are: (i) theory for smoothed level densities and occupancies in nuclei with interactions; (ii) simple form for transition strengths generated by one-body transition operators; (iii) binary correlation results showing that the transition strength density, for operators like those that generate neutrinoless double beta decay transition matrix elements, will take bivariate Gaussian form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, New York, 1997)

    Google Scholar 

  2. M. Janssen, Fluctuations and Localization in Mesoscopic Electron Systems (World Scientific, Singapore, 2001)

    Google Scholar 

  3. T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Random-matrix theories in quantum physics: common concepts. Phys. Rep. 299, 189–425 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Y. Alhassid, Statistical theory of quantum dots. Rev. Mod. Phys. 72, 895–968 (2000)

    Article  ADS  Google Scholar 

  5. Y. Alhassid, Mesoscopic Effects in Quantum Dots, Nanoparticles and Nuclei, AIP Conf. Proc., vol. 777, ed. by V. Zelevinsky (2005), pp. 250–269

    Google Scholar 

  6. M. Abramowtiz, I.A. Stegun (eds.), Handbook of Mathematical Functions, NBS Applied Mathematics Series, vol. 55 (U.S. Govt. Printing Office, Washington, D.C., 1972)

    Google Scholar 

  7. Y. Yoshinaga, A. Arima, Y.M. Zhao, Lowest bound of energies for random interactions and the origin of spin-zero ground state dominance in even-even nuclei. Phys. Rev. C 73, 017303 (2006)

    Article  ADS  Google Scholar 

  8. J.J. Shen, Y.M. Zhao, A. Arima, Y. Yoshinaga, Lowest eigenvalue of random Hamiltonians. Phys. Rev. C 77, 054312 (2008)

    Article  ADS  Google Scholar 

  9. K.F. Ratcliff, Application of spectral distributions in nuclear spectroscopy. Phys. Rev. C 3, 117–143 (1971)

    Article  ADS  Google Scholar 

  10. V.K.B. Kota, R.U. Haq, Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  11. Ph. Jacquod, A.D. Stone, Ground state magnetization for interacting fermions in a disordered potential: kinetic energy, exchange interaction, and off-diagonal fluctuations. Phys. Rev. B 64, 214416 (2001)

    Article  ADS  Google Scholar 

  12. M. Vyas, Random interaction matrix ensembles in mesoscopic physics, in Proceedings of the National Seminar on New Frontiers in Nuclear, Hadron and Mesoscopic Physics, ed. by V.K.B. Kota, A. Pratap (Allied Publishers, New Delhi, 2010), pp. 23–37

    Google Scholar 

  13. Ph. Jacquod, A.D. Stone, Suppression of ground-state magnetization in finite-size systems due to off-diagonal interaction fluctuations. Phys. Rev. Lett. 84, 3938–3941 (2000)

    Article  ADS  Google Scholar 

  14. V.K.B. Kota, N.D. Chavda, R. Sahu, One plus two-body random matrix ensemble with spin: analysis using spectral variances. Phys. Lett. A 359, 381–389 (2006)

    Article  ADS  Google Scholar 

  15. M. Vyas, Some studies on two-body random matrix ensembles, Ph.D. Thesis, M.S. University of Baroda, India (2012)

    Google Scholar 

  16. C.T. Black, D.C. Ralph, M. Tinkham, Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles. Phys. Rev. Lett. 76, 688–691 (1996)

    Article  ADS  Google Scholar 

  17. T. Papenbrock, L. Kaplan, G.F. Bertsch, Odd-even binding effect from random two-body interactions. Phys. Rev. B 65, 235120 (2002)

    Article  ADS  Google Scholar 

  18. Y. Alhassid, H.A. Weidenmüller, A. Wobst, Disordered mesoscopic systems with interaction: induced two-body ensembles and the Hartree-Fock approach. Phys. Rev. B 72, 045318 (2005)

    Article  ADS  Google Scholar 

  19. S. Schmidt, Y. Alhassid, Mesoscopic competition of superconductivity and ferromagnetism: conductance peak statistics for metallic grains. Phys. Rev. Lett. 101, 207003 (2008)

    Article  ADS  Google Scholar 

  20. Y. Alhassid, Ph. Jacquod, A. Wobst, Random matrix model for quantum dots with interactions and the conductance peak spacing distribution. Phys. Rev. B 61, R13357–R13360 (2000)

    Article  ADS  Google Scholar 

  21. S.R. Patel, S.M. Cronenwett, D.R. Stewart, A.G. Huibers, C.M. Marcus, C.I. Duruöz, J.S. Harris Jr., K. Campman, A.C. Gossard, Statistics of Coulomb blockade peak spacings. Phys. Rev. Lett. 80, 4522–4525 (1998)

    Article  ADS  Google Scholar 

  22. S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Signatures of spin pairing in chaotic quantum dots. Phys. Rev. Lett. 86, 2118–2121 (2001)

    Article  ADS  Google Scholar 

  23. M. Vyas, V.K.B. Kota, N.D. Chavda, One-plus two-body random matrix ensembles with spin: results for pairing correlations. Phys. Lett. A 373, 1434–1443 (2009)

    Article  ADS  MATH  Google Scholar 

  24. Y. Alhassid, H.A. Weidenmüller, A. Wobst, Scrambling of Hartree-Fock levels as a universal Brownian-motion process. Phys. Rev. B 76, 193110 (2007)

    Article  ADS  Google Scholar 

  25. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, I.V. Ponomarev, Quantum chaos in many-body systems: what can we learn from the Ce atom. Physica D 131, 205–220 (1999)

    Article  ADS  MATH  Google Scholar 

  26. J. Karwowski, Statistical theory of spectra. Int. J. Quant. Chem. 51, 425–437 (1994)

    Article  Google Scholar 

  27. J. Karwowski, F. Rajadell, J. Planelles, V. Mas, The first four moments of spectral density distribution of an N-electron Hamiltonian matrix defined in an antisymmetric and spin-adapted model space. At. Data Nucl. Data Tables 61, 177–232 (1995)

    Article  ADS  Google Scholar 

  28. J. Planelles, F. Rajadell, J. Karwowski, V. Mas, A diagrammatic approach to statistical spectroscopy of many-fermion Hamiltonians. Phys. Rep. 267, 161–194 (1996)

    Article  ADS  Google Scholar 

  29. M. Horoi, J. Kaiser, V. Zelevinsky, Spin- and parity-dependent nuclear level densities and the exponential convergence method. Phys. Rev. C 67, 054309 (2003)

    Article  ADS  Google Scholar 

  30. R.A. Sen’kov, M. Horoi, High-performance algorithm to calculate spin- and parity-dependent nuclear level densities. Phys. Rev. C 82, 024304 (2010)

    Article  ADS  Google Scholar 

  31. R.A. Sen’kov, M. Horoi, V. Zelevinsky, High-performance algorithm for calculating non-spurious spin- and parity-dependent nuclear level densities. Phys. Lett. B 702, 413–418 (2011)

    Article  ADS  Google Scholar 

  32. V.K.B. Kota, D. Majumdar, Application of spectral averaging theory in large shell model spaces: analysis of level density data of fp-shell nuclei. Nucl. Phys. A 604, 129–162 (1996)

    Article  ADS  Google Scholar 

  33. J.B. French, S. Rab, J.F. Smith, R.U. Haq, V.K.B. Kota, Nuclear spectroscopy in the chaotic domain: level densities. Can. J. Phys. 84, 677–706 (2006)

    Article  ADS  Google Scholar 

  34. F. Borgonovi, G. Celardo, F.M. Izrailev, G. Casati, Semiquantal approach to finite systems of interacting particles. Phys. Rev. Lett. 88, 054101 (2002)

    Article  ADS  Google Scholar 

  35. M. Vyas, V.K.B. Kota, N.D. Chavda, Transitions in eigenvalue and wavefunction structure in (1+2)-body random matrix ensembles with spin. Phys. Rev. E 81, 036212 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. V.K.B. Kota, Convergence of moment expansions for expectation values with embedded random matrix ensembles and quantum chaos. Ann. Phys. (N.Y.) 306, 58–77 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. J.B. French, V.K.B. Kota, A. Pandey, S. Tomsovic, Statistical properties of many-particle spectra VI. Fluctuation bounds on N-N T-noninvariance. Ann. Phys. (N.Y.) 181, 235–260 (1988)

    Article  ADS  Google Scholar 

  38. S. Tomsovic, Bounds on the time-reversal non-invariant nucleon-nucleon interaction derived from transition-strength fluctuations, Ph.D. Thesis, University of Rochester, Rochester, New York (1986)

    Google Scholar 

  39. V.K.B. Kota, D. Majumdar, Bivariate distributions in statistical spectroscopy studies: IV. Interacting particle Gamow-Teller strength densities and β-decay rates of fp-shell nuclei for presupernova stars. Z. Phys. A 351, 377–383 (1995)

    Article  ADS  Google Scholar 

  40. V.K.B. Kota, R. Sahu, Theory for matrix elements of one-body transition operators in the quantum chaotic domain of interacting particle systems. Phys. Rev. E 62, 3568–3571 (2000)

    Article  ADS  Google Scholar 

  41. V.K.B. Kota, N.D. Chavda, R. Sahu, Bivariate t-distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems. Phys. Rev. E 73, 047203 (2006)

    Article  ADS  Google Scholar 

  42. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, M.G. Kozlov, Structure of compound states in the chaotic spectrum of the Ce atom: localization properties, matrix elements, and enhancement of weak perturbations. Phys. Rev. A 50, 267–296 (1994)

    Article  ADS  Google Scholar 

  43. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, C. Harabati, Electron recombination with multicharged ions via chaotic many-electron states. Phys. Rev. A 66, 012713 (2002)

    Article  ADS  Google Scholar 

  44. S. Sahoo, G.F. Gribakin, V. Dzuba, Recombination of low energy electrons with U28+, arXiv:physics/0401157v1 [physics.atom-ph]

  45. F.T. Avignone III, S.R. Elliott, J. Engel, Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80, 481–516 (2008)

    Article  ADS  Google Scholar 

  46. S.R. Elliot, P. Vogel, Double beta decay. Annu. Rev. Nucl. Part. Sci. 52, 115–151 (2002)

    Article  ADS  Google Scholar 

  47. F. Boehm, P. Vogel, Physics of Massive Neutrinos, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  48. J. Kotila, F. Iachello, Phase-space factors for double-β decay. Phys. Rev. C 85, 034316 (2012)

    Article  ADS  Google Scholar 

  49. V.K.B. Kota, Nuclear models and statistical spectroscopy for double beta decay, in Neutrinoless Double Beta Decay, ed. by V.K.B. Kota, U. Sarkar (Narosa Publishing House, New Delhi, 2008), pp. 63–76

    Google Scholar 

  50. M. Vyas, V.K.B. Kota, Spectral distribution method for neutrinoless double-beta decay nuclear transition matrix elements: binary correlation results (2011). arXiv:1106.0395v1 [nucl-th]

  51. R.A. Sen’kov, M. Horoi, V. Zelevinsky, A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities. Comput. Phys. Commun. 184, 215–221 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kota, V.K.B. (2014). Applications of EGOE(1+2) and EGOE(1+2)-s . In: Embedded Random Matrix Ensembles in Quantum Physics. Lecture Notes in Physics, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-319-04567-2_7

Download citation

Publish with us

Policies and ethics