Skip to main content

One Plus Two-Body Random Matrix Ensembles for Fermions with Spin Degree of Freedom: EGOE(1+2)-s

  • Chapter
Embedded Random Matrix Ensembles in Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 884))

  • 1578 Accesses

Abstract

First non-trivial but at the same time very important, from the point of view of its applications, embedded ensemble is the embedded Gaussian orthogonal ensemble of one plus two-body interactions with spin degree of freedom [EGOE(1+2)-s] for a system of interacting fermions. This ensemble is directly applicable, as spin degree of freedom is explicitly included, to mesoscopic systems such as quantum dots and small metallic grains. Extensive numerical calculations are used to show that EGOE(1+2)-s ensemble exhibits three chaos markers, just as the EGOE(1+2) for spinless fermion systems, with the markers depending on the total m fermion spin S. This dependence is derived using propagation equations for fixed-S spectral variances. Spin degree of freedom allows for inclusion of both exchange interaction and pairing interaction in the Hamiltonian and algebraic properties of these two interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V.K.B. Kota, R.U. Haq, Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  2. J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994)

    Article  ADS  Google Scholar 

  4. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature (London) 452, 854–858 (2008)

    Article  ADS  Google Scholar 

  5. L.F. Santos, M. Rigol, Onset of quantum chaos in one dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E 81, 036206 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. L.F. Santos, M. Rigol, Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems. Phys. Rev. E 82, 031130 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. V.K.B. Kota, A. Relaño, J. Retamosa, M. Vyas, Thermalization in the two-body random ensemble, J. Stat. Mech. P10028 (2011)

    Google Scholar 

  8. C. Mejía-Monasterio, G. Benenti, G.G. Carlo, G. Casati, Entanglement across a transition to quantum chaos. Phys. Rev. A 71, 062324 (2005)

    Article  ADS  Google Scholar 

  9. S. Montangero, L. Viola, Multipartite entanglement generation and fidelity decay in disordered qubit systems. Phys. Rev. A 73, 040302(R) (2006)

    Article  ADS  Google Scholar 

  10. I. Piz̆orn, T. Prosen, T.H. Seligman, Loschmidt echoes in two-body random matrix ensembles. Phys. Rev. B 76, 035122 (2007)

    Article  ADS  Google Scholar 

  11. W.G. Brown, L.F. Santos, D.J. Starling, L. Viola, Quantum chaos, delocalization and entanglement in disordered Heisenberg models. Phys. Rev. E 77, 021106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. V.K.B. Kota, N.D. Chavda, R. Sahu, One plus two-body random matrix ensemble with spin: analysis using spectral variances. Phys. Lett. A 359, 381–389 (2006)

    Article  ADS  Google Scholar 

  13. H.E. Türeci, Y. Alhassid, Spin-orbit interaction in quantum dots in the presence of exchange correlations: an approach based on a good-spin basis of the universal Hamiltonian. Phys. Rev. B 74, 165333 (2006)

    Article  ADS  Google Scholar 

  14. M. Vyas, V.K.B. Kota, N.D. Chavda, Transitions in eigenvalue and wavefunction structure in (1+2)-body random matrix ensembles with spin. Phys. Rev. E 81, 036212 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ph. Jacquod, A.D. Stone, Ground state magnetization for interacting fermions in a disordered potential: kinetic energy, exchange interaction, and off-diagonal fluctuations. Phys. Rev. B 64, 214416 (2001)

    Article  ADS  Google Scholar 

  16. L. Kaplan, T. Papenbrock, C.W. Johnson, Spin structure of many-body systems with two-body random interactions. Phys. Rev. C 63, 014307 (2000)

    Article  ADS  Google Scholar 

  17. J. Planelles, F. Rajadell, J. Karwowski, Spectral density distribution moments of N-electron Hamiltonians in the low-density limit. J. Phys. A 30, 2181–2196 (1997)

    Article  ADS  MATH  Google Scholar 

  18. J. Karwowski, Statistical theory of spectra. Int. J. Quant. Chem. 51, 425–437 (1994)

    Article  Google Scholar 

  19. J. Karwowski, F. Rajadell, J. Planelles, V. Mas, The first four moments of spectral density distribution of an N-electron Hamiltonian matrix defined in an antisymmetric and spin-adapted model space. At. Data Nucl. Data Tables 61, 177–232 (1995)

    Article  ADS  Google Scholar 

  20. J. Planelles, F. Rajadell, J. Karwowski, V. Mas, A diagrammatic approach to statistical spectroscopy of many-fermion Hamiltonians. Phys. Rep. 267, 161–194 (1996)

    Article  ADS  Google Scholar 

  21. K.K. Mon, J.B. French, Statistical properties of many-particle spectra. Ann. Phys. (N.Y.) 95, 90–111 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.C. Parikh, Group Symmetries in Nuclear Structure (Plenum, New York, 1978)

    Book  Google Scholar 

  23. V.K.B. Kota, Sizes of effective single particle fields for s-d shell effective interactions. Phys. Rev. C 20, 347–356 (1979)

    Article  ADS  Google Scholar 

  24. V.K.B. Kota, K. Kar, Group symmetries in two-body random matrix ensembles generating order out of complexity. Phys. Rev. E 65, 026130 (2002)

    Article  ADS  Google Scholar 

  25. K.T. Hecht, Summation relation for U(N) Racah coefficients. J. Math. Phys. 15, 2148–2156 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. K.T. Hecht, J.P. Draayer, Spectral distributions and the breaking of isospin and supermultiplet symmetries in nuclei. Nucl. Phys. A 223, 285–319 (1974)

    Article  ADS  Google Scholar 

  27. B. Georgeot, D.L. Shepelyansky, Breit-Wigner width and inverse participation ratio in finite interacting Fermi systems. Phys. Rev. Lett. 79, 4365–4368 (1997)

    Article  ADS  Google Scholar 

  28. I. Talmi, Simple Models of Complex Nuclei: The Shell Model and Interacting Boson Model (Harwood Academic Publishers, Chur, 1993)

    Google Scholar 

  29. K.T. Hecht, Some simple R 5 Wigner coefficients and their application. Nucl. Phys. 63, 177–213 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  30. K.T. Hecht, Five-dimensional quasi-spin the n, T dependence of shell-model matrix elements in the seniority scheme. Nucl. Phys. A 102, 11–80 (1967)

    Article  ADS  Google Scholar 

  31. K.T. Hecht, J.P. Elliott, Coherent-state theory for the proton-neutron quasispin group. Nucl. Phys. A 438, 29–40 (1985)

    Article  ADS  Google Scholar 

  32. K.T. Hecht, Wigner coefficients for the proton-neutron quasispin group: an application of vector coherent state techniques. Nucl. Phys. A 493, 29–60 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  33. V.K.B. Kota, J.A. Castilho Alcarás, Classification of states in SO(8) proton-neutron pairing model. Nucl. Phys. A 764, 181–204 (2006)

    Article  ADS  Google Scholar 

  34. D.J. Rowe, J.L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  35. M.A. Caprio, J.H. Skrabacz, F. Iachello, Dual algebraic structures for the two-level pairing model. J. Phys. A, Math. Theor. 44, 075303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  36. V.K.B. Kota, Two-body ensembles with group symmetries for chaos and regular structures. Int. J. Mod. Phys. E 15, 1869–1883 (2006)

    Article  ADS  Google Scholar 

  37. B.G. Wybourne, Symmetry Principles and Atomic Spectroscopy (Wiley, New York, 1970)

    Google Scholar 

  38. M. Vyas, V.K.B. Kota, N.D. Chavda, One-plus two-body random matrix ensembles with spin: results for pairing correlations. Phys. Lett. A 373, 1434–1443 (2009)

    Article  ADS  MATH  Google Scholar 

  39. C. Quesne, S. Spitz, Spectral distributions of mixed configurations of identical nucleons in the seniority scheme I. Generalized seniority scheme. Ann. Phys. (N.Y.) 85, 115–151 (1974)

    Article  ADS  Google Scholar 

  40. C. Quesne, S. Spitz, Spectral distributions of mixed configurations of identical nucleons in the seniority scheme II. Configuration-seniority scheme. Ann. Phys. (N.Y.) 112, 304–327 (1978)

    Article  ADS  Google Scholar 

  41. B.J. Dalton, S.M. Grimes, J.P. Vary, S.A. Williams (eds.), Moment Methods in Many Fermion Systems (Plenum, New York, 1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kota, V.K.B. (2014). One Plus Two-Body Random Matrix Ensembles for Fermions with Spin Degree of Freedom: EGOE(1+2)-s . In: Embedded Random Matrix Ensembles in Quantum Physics. Lecture Notes in Physics, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-319-04567-2_6

Download citation

Publish with us

Policies and ethics