Skip to main content

Random Two-Body Interactions in Presence of Mean-Field: EGOE(1+2)

  • Chapter
Embedded Random Matrix Ensembles in Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 884))

  • 1573 Accesses

Abstract

Embedded GOE generated by random two-body interactions in the presence of a one-body mean-field [called EGOE(1+2)] for spinless fermion systems is introduced and its construction follows easily from that of EGOE(2). In the limiting situation with the two-body interaction much stronger than the mean-field, EGOE(1+2) reduces to EGOE(2). Examining eigenvalue density, level fluctuations, strength functions, information and occupancy entropies as a function of the interaction strength λ (expressed in the units of the average spacing of the energies of the mean-field one-particle states), it is shown numerically that the ensemble generates three transition or chaos markers. They correspond to Poisson to GOE transition in level fluctuations, Breit-Wigner to Gaussian transition in strength functions and the third marker defining a region of thermalization. Using unitary decomposition and trace propagation on one hand and perturbation theory on the other, parametric dependence of the three chaos markers are determined. Also derived are formulas for number of principal components (NPC), information entropy and occupancy entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V.V. Flambaum, G.F. Gribakin, F.M. Izrailev, Correlations within eigenvectors and transition amplitudes in the two-body random interaction model. Phys. Rev. E 53, 5729–5741 (1996)

    Article  ADS  Google Scholar 

  2. V.K.B. Kota, Embedded random matrix ensembles for complexity and chaos in finite interacting particle systems. Phys. Rep. 347, 223–288 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Y. Alhassid, Statistical theory of quantum dots. Rev. Mod. Phys. 72, 895–968 (2000)

    Article  ADS  Google Scholar 

  4. Y. Alhassid, H.A. Weidenmüller, A. Wobst, Disordered mesoscopic systems with interaction: induced two-body ensembles and the Hartree-Fock approach. Phys. Rev. B 72, 045318 (2005)

    Article  ADS  Google Scholar 

  5. Ph. Jacquod, D.L. Shepelyansky, Emergence of quantum chaos in finite interacting Fermi systems. Phys. Rev. Lett. 79, 1837–1840 (1997)

    Article  ADS  Google Scholar 

  6. Ph. Jacquod, A.D. Stone, Ground state magnetization for interacting fermions in a disordered potential: kinetic energy, exchange interaction, and off-diagonal fluctuations. Phys. Rev. B 64, 214416 (2001)

    Article  ADS  Google Scholar 

  7. M. Hamermesh, Group Theory and Its Application to Physical Problems (Addison-Wesley, New York, 1962)

    MATH  Google Scholar 

  8. B.G. Wybourne, Symmetry Principles and Atomic Spectroscopy (Wiley, New York, 1970)

    Google Scholar 

  9. F.S. Chang, J.B. French, T.H. Thio, Distribution methods for nuclear energies, level densities and excitation strengths. Ann. Phys. (N.Y.) 66, 137–188 (1971)

    Article  ADS  Google Scholar 

  10. B.G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974)

    MATH  Google Scholar 

  11. J.C. Parikh, Group Symmetries in Nuclear Structure (Plenum, New York, 1978)

    Book  Google Scholar 

  12. V.K.B. Kota, R.U. Haq, Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  13. C.M. Vincent, Group classification of many-body interactions. Phys. Rev. 163, 1044–1050 (1967)

    Article  ADS  Google Scholar 

  14. S. Aberg, Onset of chaos in rapidly rotating nuclei. Phys. Rev. Lett. 64, 3119–3122 (1990)

    Article  ADS  Google Scholar 

  15. R. Berkovits, Y. Avishai, Localization in Fock space: a finite-energy scaling hypothesis for many-particle excitation statistics. Phys. Rev. Lett. 80, 568–571 (1998)

    Article  ADS  Google Scholar 

  16. N.D. Chavda, V. Potbhare, V.K.B. Kota, Statistical properties of dense interacting Boson systems with one plus two-body random matrix ensembles. Phys. Lett. A 311, 331–339 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. V.K.B. Kota, R. Sahu, Breit-Wigner to Gaussian transition in strength functions, arXiv:nucl-th/0006079

  18. B. Georgeot, D.L. Shepelyansky, Breit-Wigner width and inverse participation ratio in finite interacting Fermi systems. Phys. Rev. Lett. 79, 4365–4368 (1997)

    Article  ADS  Google Scholar 

  19. V.V. Flambaum, F.M. Izrailev, Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates. Phys. Rev. E 56, 5144–5159 (1997)

    Article  ADS  Google Scholar 

  20. Ph. Jacquod, I. Varga, Duality between the weak and strong interaction limits of deformed fermionic two-body random ensembles. Phys. Rev. Lett. 89, 134101 (2002)

    Article  ADS  Google Scholar 

  21. N. Frazier, B.A. Brown, V. Zelevinsky, Strength functions and spreading widths of simple shell model configurations. Phys. Rev. C 54, 1665–1674 (1996)

    Article  ADS  Google Scholar 

  22. D. Angom, S. Ghosh, V.K.B. Kota, Strength functions, entropies and duality in weakly to strongly interacting fermion systems. Phys. Rev. E 70, 016209 (2004)

    Article  ADS  Google Scholar 

  23. V.K.B. Kota, R. Sahu, Structure of wavefunctions in (1+2)-body random matrix ensembles. Phys. Rev. E 64, 016219 (2001)

    Article  ADS  Google Scholar 

  24. A. Stuart, J.K. Ord, Kendall’s Advanced Theory of Statistics: Distribution Theory (Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  25. L. Kaplan, T. Papenbrock, Wave function structure in two-body random matrix ensembles. Phys. Rev. Lett. 84, 4553–4556 (2000)

    Article  ADS  Google Scholar 

  26. N.D. Chavda, V. Potbhare, V.K.B. Kota, Strength functions for interacting bosons in a mean-field with random two-body interactions. Phys. Lett. A 326, 47–54 (2004)

    Article  ADS  MATH  Google Scholar 

  27. M. Abramowtiz, I.A. Stegun (eds.), Handbook of Mathematical Functions, NBS Applied Mathematics Series, vol. 55 (U.S. Govt. Printing Office, Washington, D.C., 1972)

    Google Scholar 

  28. J.P. Draayer, J.B. French, S.S.M. Wong, Spectral distributions and statistical spectroscopy: I General theory. Ann. Phys. (N.Y.) 106, 472–502 (1977)

    Article  ADS  Google Scholar 

  29. V.K.B. Kota, R. Sahu, Single particle entropy in (1+2)-body random matrix ensembles. Phys. Rev. E 66, 037103 (2002)

    Article  ADS  Google Scholar 

  30. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature (London) 452, 854–858 (2008)

    Article  ADS  Google Scholar 

  31. M. Horoi, V. Zelevinsky, B.A. Brown, Chaos vs thermalization in the nuclear shell model. Phys. Rev. Lett. 74, 5194–5197 (1995)

    Article  ADS  Google Scholar 

  32. V.K.B. Kota, N.D. Chavda, R. Sahu, Bivariate t-distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems. Phys. Rev. E 73, 047203 (2006)

    Article  ADS  Google Scholar 

  33. V.K.B. Kota, R. Sahu, Information entropy and number of principal components in shell model transition strength distributions. Phys. Lett. B 429, 1–6 (1998)

    Article  ADS  Google Scholar 

  34. J.B. French, V.K.B. Kota, A. Pandey, S. Tomsovic, Statistical properties of many-particle spectra VI. Fluctuation bounds on N-N T-noninvariance. Ann. Phys. (N.Y.) 181, 235–260 (1988)

    Article  ADS  Google Scholar 

  35. J.P. Draayer, J.B. French, S.S.M. Wong, Spectral distributions and statistical spectroscopy: II Shell-model comparisons. Ann. Phys. (N.Y.) 106, 503–524 (1977)

    Article  ADS  Google Scholar 

  36. J.M.G. Gómez, K. Kar, V.K.B. Kota, R.A. Molina, J. Retamosa, Number of principal components and localization length in E2 and M1 transition strengths in 46V. Phys. Rev. C 69, 057302 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kota, V.K.B. (2014). Random Two-Body Interactions in Presence of Mean-Field: EGOE(1+2). In: Embedded Random Matrix Ensembles in Quantum Physics. Lecture Notes in Physics, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-319-04567-2_5

Download citation

Publish with us

Policies and ethics