Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 884))

  • 1643 Accesses

Abstract

Introduced first is the classification of the classical GOE, GUE and GSE ensembles. To get started with their properties, nearest neighbor spacing distributions (NNSD) for the simple 2×2 matrix version of these ensembles are derived. Going further, one and two-point functions (in the eigenvalues) for general N×N GOE and GUE are derived using the so called binary correlation approximation. Measures for level fluctuations as given by the number variance and Dyson-Mehta Δ 3 statistic on one hand and on the other strength functions, information entropy and Porter-Thomas distribution for wavefunction structure as generated by these ensembles are briefly discussed. In addition, presented are some aspects of data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965)

    Google Scholar 

  2. F. Haake, Quantum Signatures of Chaos, 3rd edn. (Springer, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  3. R.G. Sachs, The Physics of Time Reversal (University of Chicago Press, Chicago, 1987)

    Google Scholar 

  4. J. von Neumann, E.P. Wigner, On the bahavior of eigenvalues in adiabatic processes. Phys. Z. 30, 467–470 (1929)

    MATH  Google Scholar 

  5. M.L. Mehta, Random Matrices, 3rd edn. (Elsevier, Amsterdam, 2004)

    MATH  Google Scholar 

  6. O. Bohigas, R.U. Haq, A. Pandey, Fluctuation properties of nuclear energy levels and widths: comparison of theory and experiment, in Nuclear Data for Science and Technology, ed. by K.H. Böckhoff (Reidel, Dordrecht, 1983), pp. 809–813

    Chapter  Google Scholar 

  7. O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–4 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, T. Guhr, H.E. Stanley, Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126 (2006)

    Article  ADS  Google Scholar 

  9. M.S. Santhanam, P.K. Patrta, Statistics of atmospheric correlations. Phys. Rev. E 64, 016102 (2001)

    Article  ADS  Google Scholar 

  10. V.K.B. Kota, Embedded random matrix ensembles for complexity and chaos in finite interacting particle systems. Phys. Rep. 347, 223–288 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. K. Patel, M.S. Desai, V. Potbhare, V.K.B. Kota, Average-fluctuations separation in energy levels in dense interacting boson systems. Phys. Lett. A 275, 329–337 (2000)

    Article  ADS  Google Scholar 

  12. R.U. Haq, A. Pandey, O. Bohigas, Fluctuation properties of nuclear energy levels: do theory and experiment agree? Phys. Rev. Lett. 48, 1086–1089 (1982)

    Article  ADS  Google Scholar 

  13. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Random matrix physics: spectrum and strength fluctuations. Rev. Mod. Phys. 53, 385–479 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Stuart, J.K. Ord, Kendall’s Advanced Theory of Statistics: Distribution Theory (Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  15. E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  16. E.P. Wigner, Statistical properties of real symmetric matrices with many dimensions, in Can. Math. Congr. Proc. (University of Toronto Press, Toronto, 1957), pp. 174–184

    Google Scholar 

  17. J.B. French, P.A. Mello, A. Pandey, Statistical properties of many-particle spectra II. Two-point correlations and fluctuations. Ann. Phys. (N.Y.) 113, 277–293 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Szegő, Orthogonal Polynomials, Colloquium Publications, vol. 23 (Am. Math. Soc., Providence, 2003)

    Google Scholar 

  19. K.K. Mon, J.B. French, Statistical properties of many-particle spectra. Ann. Phys. (N.Y.) 95, 90–111 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Bose, R.S. Hazra, K. Saha, Patterned random matrices and method of moments, in Proceedings of the International Congress of Mathematics 2010, vol. IV, ed. by R. Bhatia (World Scientific, Singapore, 2010), pp. 2203–2231

    Google Scholar 

  21. F.J. Dyson, M.L. Mehta, Statistical theory of energy levels of complex systems IV. J. Math. Phys. 4, 701–712 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. R.G. Nazmitdinov, E.I. Shahaliev, M.K. Suleymanov, S. Tomsovic, Analysis of nucleus-nucleus collisions at high energies and random matrix theory. Phys. Rev. C 79, 054905 (2009)

    Article  ADS  Google Scholar 

  23. C.E. Porter, R.G. Thomas, Fluctuations of nuclear reaction widths. Phys. Rev. 104, 483–491 (1956)

    Article  ADS  Google Scholar 

  24. H. Alt, H.-D. Gräf, H.L. Harney, R. Hofferbert, H. Lengeler, A. Richter, R. Schardt, H.A. Weidenmüller, Gaussian orthogonal ensemble statistics in a microwave stadium billiard with chaotic dynamics: Porter-Thomas distribution and algebraic decay of time correlations. Phys. Rev. Lett. 74, 62–65 (1995)

    Article  ADS  Google Scholar 

  25. A. Rényi, On measures of information and entropy, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probabilities, vol. 1 (1961), pp. 547–561

    Google Scholar 

  26. I. Varga, J. Pipek, Rényi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems. Phys. Rev. E 68, 026202 (2003)

    Article  ADS  Google Scholar 

  27. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Champaign, 1949)

    MATH  Google Scholar 

  28. N. Ullah, On a generalized distribution of the Poles of the unitary collision matrix. J. Math. Phys. 10, 2099–2104 (1969)

    Article  ADS  Google Scholar 

  29. P. Shukla, Eigenfunction statistics of complex systems: a common mathematical formulation. Phys. Rev. E 75, 051113 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. B. Dietz, T. Guhr, H.L. Harney, A. Richter, Strength distributions and symmetry breaking in coupled microwave billiards. Phys. Rev. Lett. 96, 254101 (2006)

    Article  ADS  Google Scholar 

  31. A. Pandey, Statistical properties of many-particle spectra III. Ergodic behavior in random matrix ensembles. Ann. Phys. (N.Y.) 119, 170–191 (1979)

    Article  ADS  Google Scholar 

  32. A.D. Jackson, C. Mejia-Monasterio, T. Rupp, M. Saltzer, T. Wilke, Spectral ergodicity and normal modes in ensembles of sparse matrices. Nucl. Phys. A 687, 405–434 (2001)

    Article  ADS  MATH  Google Scholar 

  33. O. Bohigas, R.U. Haq, A. Pandey, Higher-order correlations in spectra of complex systems. Phys. Rev. Lett. 54, 1645–1648 (1982)

    Article  ADS  Google Scholar 

  34. O. Bohigas, M.J. Giannoni, Level density fluctuations and random matrix theory. Ann. Phys. (N.Y.) 89, 393–422 (1975)

    Article  ADS  Google Scholar 

  35. N. Rosenzweig, C.E. Porter, Repulsion of energy levels in complex atomic spectra. Phys. Rev. 120, 1698–1714 (1960)

    Article  ADS  Google Scholar 

  36. D. Biswas, S.R. Jain, Quantum description of a pseudointegrable system: the π/3-rhombus billiard. Phys. Rev. A 42, 3170–3185 (1990)

    Article  ADS  Google Scholar 

  37. G. Date, S.R. Jain, M.V.N. Murthy, Rectangular billiard in the presence of a flux line. Phys. Rev. E 51, 198–203 (1995)

    Article  ADS  Google Scholar 

  38. P.R. Richens, M.V. Berry, Pseudointegrable systems in classical and quantum mechanics. Physica D 2, 495–512 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  39. A.M. Garcïa-Garcïa, J. Wang, Semi-Poisson statistics in quantum chaos. Phys. Rev. E 73, 036210 (2006)

    Article  ADS  Google Scholar 

  40. E.B. Bogomolny, U. Gerland, C. Schmit, Models of intermediate spectral statistics. Phys. Rev. E 59, R1315–1318 (1999)

    Article  ADS  Google Scholar 

  41. E.B. Bogomolny, C. Schmit, Spectral statistics of a quantum interval-exchange map. Phys. Rev. Lett. 93, 254102 (2004)

    Article  ADS  Google Scholar 

  42. J. Flores, M. Horoi, M. Mueller, T.H. Seligman, Spectral statistics of the two-body random ensemble revisited. Phys. Rev. E 63, 026204 (2000)

    Article  ADS  Google Scholar 

  43. J.D. Garrett, J.Q. Robinson, A.J. Foglia, H.-Q. Jin, Nuclear level repulsion and order vs. chaos. Phys. Lett. B 392, 24–29 (1997)

    Article  ADS  Google Scholar 

  44. J. Enders, T. Guhr, N. Huxel, P. von Neumann-Cosel, C. Rangacharyulu, A. Richter, Level spacing distribution of scissors mode states in heavy deformed nuclei. Phys. Lett. B 486, 273–278 (2000)

    Article  ADS  Google Scholar 

  45. J. Enders, T. Guhr, A. Heine, P. von Neuman-Cosel, V.Yu. Ponomarev, A. Richter, J. Wambach, Spectral statistics and the fine structure of the electric pygmy dipole resonance in N=82 nuclei. Nucl. Phys. A 41, 3–28 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kota, V.K.B. (2014). Classical Random Matrix Ensembles. In: Embedded Random Matrix Ensembles in Quantum Physics. Lecture Notes in Physics, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-319-04567-2_2

Download citation

Publish with us

Policies and ethics