Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 884))

Abstract

Embedded random matrix ensembles, introduced in 1970 and being explored in considerable detail since 1994, have started occupying an important position in quantum physics in the study of isolated finite quantum many-particle systems. As aptly stated by Weidenmüller : “Although used with increasing frequency in many branches of Physics, random matrix ensembles sometimes are too unspecific to account for important features of the physical system at hand. One refinement which retains the basic stochastic approach but allows for such features consists in the use of embedded ensembles”. In this chapter, given is a general introduction emphasizing the importance of random matrix theory in quantum physics in general and embedded random matrix ensembles in particular. Also given is a short preview of the contents of the next fifteen chapters of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Wishart, The generalized product moment distribution in samples from a normal multivariate population. Biometrika 20A, 32–52 (1928)

    Google Scholar 

  2. E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  3. E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions II. Ann. Math. 65, 203–207 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  4. E.P. Wigner, Statistical properties of real symmetric matrices with many dimensions, in Can. Math. Congr. Proc. (University of Toronto Press, Toronto, 1957), pp. 174–184

    Google Scholar 

  5. E.P. Wigner, The probability of the existence of a self reproducing unit, reproduced from the logic of personal knowledge: essays in honor of Michael Polanyi, Chap. 19 (Routledge and Kegan Paul, London, 1961), in Symmetries and Reflections: Scientific Essays of E.P. Wigner, ed. by W.J. Moore, M. Scriven (Indiana University Press, Bloomington, 1967), Reprinted by (Ox Bow Press, Woodbridge, 1979), pp. 200–208

    Google Scholar 

  6. J.B. French, Elementary aspects of nuclear quantum chaos, in A Gift of Prophecy—Essays in the Celebration of the Life of R.E. Marshak, ed. by E.C.G. Sudarshan (World Scientific, Singapore, 1994), pp. 156–167

    Google Scholar 

  7. F.J. Dyson, Statistical theory of energy levels of complex systems I. J. Math. Phys. 3, 140–156 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. F.J. Dyson, Statistical theory of energy levels of complex systems II. J. Math. Phys. 3, 157–165 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  9. F.J. Dyson, Statistical theory of energy levels of complex systems III. J. Math. Phys. 3, 166–175 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  10. F.J. Dyson, The threefold way: algebraic structures of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. C.E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965)

    Google Scholar 

  12. M.L. Mehta, Random Matrices, 3rd edn. (Elsevier, Amsterdam, 2004)

    MATH  Google Scholar 

  13. J.B. Garg (ed.), Statistical Properties of Nuclei, Proceedings of the International Conference on Statistical Properties of Nuclei, Held at Albany (N.Y.), August 23–27, 1971 (Plenum, New York, 1972)

    Google Scholar 

  14. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Random matrix physics: spectrum and strength fluctuations. Rev. Mod. Phys. 53, 385–479 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  15. O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–4 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. O. Bohigas, Random matrix theories and chaotic dynamics, in Chaos and Quantum Physics, ed. by M.J. Giannoni, A. Voros, J. Zinn-Justin (Elsevier, Amsterdam, 1991), pp. 87–199

    Google Scholar 

  17. S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake, Periodic-orbit theory of level correlations. Phys. Rev. Lett. 98, 044103 (2007)

    Article  ADS  Google Scholar 

  18. S. Müller, S. Heusler, A. Altland, P. Braun, F. Haake, Periodic-orbit theory of universal level correlations in quantum chaos. New J. Phys. 11, 103025 (2009)

    Article  Google Scholar 

  19. P. Braun, Beyond the Heisenberg time: semiclassical treatment of spectral correlations in chaotic systems with spin 1/2. J. Phys. A 45, 045102 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.V. Berry, M. Tabor, Level clustering in the regular spectrum. Proc. R. Soc. Lond. A 356, 375–394 (1977)

    Article  ADS  MATH  Google Scholar 

  21. M.V. Berry, Semiclassical theory of spectral rigidity. Proc. R. Soc. Lond. A 400, 229–251 (1985)

    Article  ADS  MATH  Google Scholar 

  22. F. Haake, Quantum Signatures of Chaos, 3rd edn. (Springer, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  23. H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, New York, 1999)

    MATH  Google Scholar 

  24. K.B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, New York, 1997)

    MATH  Google Scholar 

  25. T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Random-matrix theories in quantum physics: common concepts. Phys. Rep. 299, 189–425 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.D. Mirlin, Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep. 326, 259–382 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. H.A. Weidenmüller, G.E. Mitchell, Random matrices and chaos in nuclear physics: nuclear structure. Rev. Mod. Phys. 81, 539–589 (2009)

    Article  ADS  Google Scholar 

  28. G.E. Mitchell, A. Richter, H.A. Weidenmüller, Random matrices and chaos in nuclear physics: nuclear reactions. Rev. Mod. Phys. 82, 2845–2901 (2010)

    Article  ADS  MATH  Google Scholar 

  29. P.J. Forrester, N.C. Snaith, J.J.M. Verbaarschot (eds.), Special issue: random matrix theory. J. Phys. A 36, R1–R10 and 2859–3646 (2003)

    Google Scholar 

  30. V.A. Marc̆enko, L.A. Pastur, Distribution of eigenvalues for some sets of random matrices. Math. USSR Sb. 1, 457–483 (1967)

    Article  Google Scholar 

  31. L.A. Pastur, On the spectrum of random matrices. Theor. Math. Phys. 10, 67–74 (1972)

    Article  MathSciNet  Google Scholar 

  32. N.M. Katz, P. Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy, Colloquium Publication, vol. 45 (Am. Math. Soc., Providence, 1999)

    MATH  Google Scholar 

  33. P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes, vol. 3 (Am. Math. Soc. and Courant Institute of Mathematical Sciences at New York, Providence, 2000)

    Google Scholar 

  34. A.M. Tulino, S. Verdú, Random Matrix Theory and Wireless Communication (Now Publishers, Hanover, 2004)

    Google Scholar 

  35. J. Baik, T. Kriecherbauer, L. Li, K.D.T.-R. McLaughlin, C. Tomei (eds.), Integrable Systems and Random Matrices, Contemporary Mathematics, vol. 458 (Am. Math. Soc., Providence, 2008)

    MATH  Google Scholar 

  36. G. Blower (ed.), Random Matrices: High Dimensional Phenomena, London Mathematical Society Lecture Series, vol. 367 (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  37. P. Deift, D. Gioev, Random Matrix Theory: Invariant Ensembles and Universality (Am. Math. Soc. and Courant Institute of Mathematical Sciences at New York, Providence, 2009)

    Google Scholar 

  38. G.W. Anderson, A. Guionnet, O. Zeitouni, An Introduction to Random Matrices (Cambridge University Press, New York, 2010)

    MATH  Google Scholar 

  39. Z. Bai, J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, 2nd edn. (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  40. L. Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs, vol. 171 (Am. Math. Soc., Providence, 2011)

    MATH  Google Scholar 

  41. R. Couillet, M. Debbah, Random Matrix Methods for Wireless Communications (Cambridge University Press, New York, 2012)

    Google Scholar 

  42. M. Wright, R. Weiver, New Directions in Linear Acoustics and Vibrations: Quantum Chaos, Random Matrix Theory and Complexity (Cambridge University Press, New York, 2011)

    Google Scholar 

  43. P.J. Forrester, Log-Gases and Random Matrices (Princeton University Press, Princeton, 2010)

    MATH  Google Scholar 

  44. G. Akemann, J. Baik, P. Di Francesco (eds.), The Oxford Handbook of Random Matrix Theory (Oxford University Press, Oxford, 2011)

    MATH  Google Scholar 

  45. V.K.B. Kota, Embedded random matrix ensembles for complexity and chaos in finite interacting particle systems. Phys. Rep. 347, 223–288 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. L. Benet, H.A. Weidenmüller, Review of the k-body embedded ensembles of Gaussian random matrices. J. Phys. A 36, 3569–3594 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. T. Papenbrock, H.A. Weidenmüller, Random matrices and chaos in nuclear spectra. Rev. Mod. Phys. 79, 997–1013 (2007)

    Article  ADS  MATH  Google Scholar 

  48. J.M.G. Gómez, K. Kar, V.K.B. Kota, R.A. Molina, A. Relaño, J. Retamosa, Many-body quantum chaos: recent developments and applications to nuclei. Phys. Rep. 499, 103–226 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Vyas, V.K.B. Kota, Random matrix structure of nuclear shell model Hamiltonian matrices and comparison with an atomic example. Eur. Phys. J. A 45, 111–120 (2010)

    Article  ADS  Google Scholar 

  50. J.B. French, S.S.M. Wong, Validity of random matrix theories for many-particle systems. Phys. Lett. B 33, 449–452 (1970)

    Article  ADS  Google Scholar 

  51. J.B. French, S.S.M. Wong, Some random-matrix level and spacing distributions for fixed-particle-rank interactions. Phys. Lett. B 35, 5–7 (1971)

    Article  ADS  Google Scholar 

  52. J.B. French, Analysis of distant-neighbour spacing distributions for k-body interaction ensembles. Rev. Mex. Fis. 22, 221–229 (1973)

    Google Scholar 

  53. O. Bohigas, J. Flores, Two-body random Hamiltonian and level density. Phys. Lett. B 34, 261–263 (1971)

    Article  ADS  Google Scholar 

  54. O. Bohigas, J. Flores, Spacing and individual eigenvalue distributions of two-body random Hamiltonians. Phys. Lett. B 35, 383–387 (1971)

    Article  ADS  Google Scholar 

  55. J.B. French, Special topics in spectral distributions, in Moment Methods in Many Fermion Systems, ed. by B.J. Dalton, S.M. Grimes, J.P. Vary, S.A. Williams (Plenum, New York, 1980), pp. 91–108

    Chapter  Google Scholar 

  56. K.K. Mon, J.B. French, Statistical properties of many-particle spectra. Ann. Phys. (N.Y.) 95, 90–111 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  57. J.B. French, V.K.B. Kota, A. Pandey, S. Tomsovic, Statistical properties of many-particle spectra VI. Fluctuation bounds on N-N T-noninvariance. Ann. Phys. (N.Y.) 181, 235–260 (1988)

    Article  ADS  Google Scholar 

  58. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, M.G. Kozlov, Structure of compound states in the chaotic spectrum of the Ce atom: localization properties, matrix elements, and enhancement of weak perturbations. Phys. Rev. A 50, 267–296 (1994)

    Article  ADS  Google Scholar 

  59. V.V. Flambaum, G.F. Gribakin, F.M. Izrailev, Correlations within eigenvectors and transition amplitudes in the two-body random interaction model. Phys. Rev. E 53, 5729–5741 (1996)

    Article  ADS  Google Scholar 

  60. V.V. Flambaum, F.M. Izrailev, Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates. Phys. Rev. E 56, 5144–5159 (1997)

    Article  ADS  Google Scholar 

  61. M. Horoi, V. Zelevinsky, B.A. Brown, Chaos vs thermalization in the nuclear shell model. Phys. Rev. Lett. 74, 5194–5197 (1995)

    Article  ADS  Google Scholar 

  62. V. Zelevinsky, B.A. Brown, N. Frazier, M. Horoi, The nuclear shell model as a testing ground for many-body quantum chaos. Phys. Rep. 276, 85–176 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  63. Ph. Jacquod, D.L. Shepelyansky, Emergence of quantum chaos in finite interacting Fermi systems. Phys. Rev. Lett. 79, 1837–1840 (1997)

    Article  ADS  Google Scholar 

  64. B. Georgeot, D.L. Shepelyansky, Breit-Wigner width and inverse participation ratio in finite interacting Fermi systems. Phys. Rev. Lett. 79, 4365–4368 (1997)

    Article  ADS  Google Scholar 

  65. V.K.B. Kota, R. Sahu, Information entropy and number of principal components in shell model transition strength distributions. Phys. Lett. B 429, 1–6 (1998)

    Article  ADS  Google Scholar 

  66. Y. Alhassid, Statistical theory of quantum dots. Rev. Mod. Phys. 72, 895–968 (2000)

    Article  ADS  Google Scholar 

  67. V.K.B. Kota, R. Sahu, Structure of wavefunctions in (1+2)-body random matrix ensembles. Phys. Rev. E 64, 016219 (2001)

    Article  ADS  Google Scholar 

  68. W.G. Brown, L.F. Santos, D.J. Starling, L. Viola, Quantum chaos, delocalization and entanglement in disordered Heisenberg models. Phys. Rev. E 77, 021106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  69. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature (London) 452, 854–858 (2008)

    Article  ADS  Google Scholar 

  70. L.F. Santos, M. Rigol, Onset of quantum chaos in one dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E 81, 036206 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  71. L.F. Santos, M. Rigol, Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems. Phys. Rev. E 82, 031130 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  72. J.B. French, Elementary principles of spectral distributions, in Moment Methods in Many Fermion Systems, ed. by B.J. Dalton, S.M. Grimes, J.P. Vary, S.A. Williams (Plenum, New York, 1980), pp. 1–16

    Chapter  Google Scholar 

  73. V.K.B. Kota, R.U. Haq, Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific, Singapore, 2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kota, V.K.B. (2014). Introduction. In: Embedded Random Matrix Ensembles in Quantum Physics. Lecture Notes in Physics, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-319-04567-2_1

Download citation

Publish with us

Policies and ethics