Skip to main content

Lecture 6 Multimedia Data Mining and Knowledge Discovery

  • Chapter
  • First Online:
Biomedical Informatics

Abstract

At the end of this sixth lecture you:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actuarial science is the discipline that applies mathematical and statistical methods to assess risk, e.g., for insurance and finance.

References

  • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th International conference on very large data bases, VLDB, pp 487–499

    Google Scholar 

  • Bandyopadhyay S, Saha S (2013) Unsupervised classification: similarity measures, classical and metaheuristic approaches, and applications. Springer, Heidelberg

    Book  Google Scholar 

  • Barra A, Bernacchia A, Santucci E, Contucci P (2012) On the equivalence of Hopfield networks and Boltzmann Machines. Neural Netw 34:1–9

    Article  MATH  Google Scholar 

  • Berka P, Rauch J, Tomecková M (2007) Lessons learned from the ECML/PKDD discovery challenge on the atherosclerosis risk factors data. Comput Informatic 26(3):329–344

    Google Scholar 

  • Blandford A, Attfield S (2010) Interacting with information. Synth Lect Hum Center Informat 3(1):1–99

    Article  Google Scholar 

  • Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3(4–5):993–1022

    MATH  Google Scholar 

  • Boisot M, Canals A (2004) Data, information and knowledge: have we got it right? J Evol Econ 14(1):43–67

    Article  Google Scholar 

  • Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on computational learning theory, ACM, pp 144–152

    Google Scholar 

  • Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Chapman & Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  • Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. Comput Network ISDN Syst 30(1):107–117

    Article  Google Scholar 

  • Cucchetti A, Vivarelli M, Heaton ND, Phillips S, Piscaglia F, Bolondi L, La Barba G, Foxton MR, Rela M, O’grady J (2007) Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease. Int J Gastroenterol Hepatol GUT 56(2):253

    Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  • Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero–one loss. Mach Learn 29(2–3):103–130

    Article  MATH  Google Scholar 

  • Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) The KDD process for extracting useful knowledge from volumes of data. Commun ACM 39(11):27–34

    Article  Google Scholar 

  • Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock JW, Nyberg E, Prager J (2010) Building Watson: an overview of the DeepQA project. AI Maga 31(3):59–79

    Google Scholar 

  • Ferrucci D, Lally A (2004) Building an example application with the unstructured information management architecture. IBM Syst J 43(3):455–475

    Article  Google Scholar 

  • Ferrucci D, Levas A, Bagchi S, Gondek D, Mueller ET (2013) Watson: beyond Jeopardy! Artif Intell 199–200:93–105

    Article  Google Scholar 

  • Fix E, Hodges Jr. JL (1951) Discriminatory analysis-nonparametric discrimination: consistency properties. DTIC document (online open available)

    Google Scholar 

  • Foltz PW, Kintsch W, Landauer TK (1998) The measurement of textual coherence with latent semantic analysis. Discourse Process 25(2–3):285–307

    Article  Google Scholar 

  • Freeman S (2008) Biological science. Pearson Education, Upper Saddle River, New Jersey

    Google Scholar 

  • Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning and an application to boosting. Computational learning theory. Springer, Berlin, pp 23–27

    Google Scholar 

  • Funk P, Xiong N (2006) Case-based reasoning and knowledge discovery in medical applications with time series. Comput Intell 22(3–4):238–253

    Article  MathSciNet  Google Scholar 

  • Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22(14):184–190

    Article  Google Scholar 

  • Girolami M, Kaban A (2005) Sequential activity profiling: Latent Dirichlet allocation of Markov chains. Data Min Knowl Disc 10(3):175–196

    Article  MathSciNet  Google Scholar 

  • Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn, The Morgan Kaufmann series in data management systems. Morgan Kaufmann Publishers, San Francisco, CA

    Google Scholar 

  • Hirsh H (2008) Data mining research: current status and future opportunities. Stat Anal Data Mining 1(2):104–107

    Article  MathSciNet  Google Scholar 

  • Holzinger A (2013) Human–computer interaction & knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Cuzzocrea A, Kittl C, Simos DE, Weippl E, Xu L (eds) Multidisciplinary research and practice for information systems. Springer lecture notes in computer science LNCS 8127. Springer, Berlin, pp 319–328

    Google Scholar 

  • Holzinger A, Scherer R, Seeber M, Wagner J, Müller-Putz G (2012) Computational sensemaking on examples of knowledge discovery from neuroscience data: towards enhancing stroke rehabilitation. In: Böhm C, Khuri S, Lhotská L, Renda M (eds) Information technology in bio- and medical informatics, vol LNCS 7451, Lecture notes in computer science. Springer, Heidelberg, pp 166–168

    Chapter  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79(8):2554–2558

    Article  MathSciNet  Google Scholar 

  • Hopfield JJ (1987) Learning algorithms and probability distributions in feed-forward and feed-back networks. Proc Natl Acad Sci U S A 84(23):8429–8433

    Article  MathSciNet  Google Scholar 

  • Kakkonen T, Myller N, Sutinen E (2006) Applying latent Dirichlet allocation to automatic essay grading, Advances in natural language processing, Proceedings. Springer, Berlin, pp 110–120

    Google Scholar 

  • Kim SY, Moon SK, Jung DC, Hwang SI, Sung CK, Cho JY, Kim SH, Lee J, Lee HJ (2011) Pre-operative prediction of advanced prostatic cancer using clinical decision support systems: accuracy comparison between support vector machine and artificial neural network. Korean J Radiol 12(5):588–594

    Article  Google Scholar 

  • Knaus WA, Wagner DP, Lynn J (1991) Short-term mortality predictions for critically ill hospitalized adults: science and ethics. Science 254(5030):389

    Article  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69

    Article  MATH  MathSciNet  Google Scholar 

  • Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268

    MATH  MathSciNet  Google Scholar 

  • Kreuzthaler M, Bloice MD, Faulstich L, Simonic KM, Holzinger A (2011) A comparison of different retrieval strategies working on medical free texts. J Univer Comput Sci 17(7):1109–1133

    Google Scholar 

  • Kreuzthaler M, Bloice MD, Simonic K-M, Holzinger A (2010) On the need for open-source ground truths for medical information retrieval systems. In: Tochtermann K, Maurer H (Eds). I-KNOW 2010, 10th international conference on knowledge management and knowledge technologies, Graz, Austria, pp 371-381

    Google Scholar 

  • Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26(2):195–197

    Article  Google Scholar 

  • Landauer TK, Dumais ST (1997) A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol Rev 104(2):211–240

    Article  Google Scholar 

  • Landauer TK, Foltz PW, Laham D (1998) An introduction to latent semantic analysis. Discourse Process 25(2–3):259–284

    Article  Google Scholar 

  • Leitner D, Wassertheurer S, Hessinger M, Holzinger A (2006) A lattice Boltzmann model for pulsatile blood flow in elastic vessels. New Computing in Medical Informatics & Health Care. Special Edition of Springer e&i 123(4):64–68

    Google Scholar 

  • Liu H, Motoda H, Yu L (2004) A selective sampling approach to active feature selection. Artif Intell 159(1):49–74

    Article  MATH  MathSciNet  Google Scholar 

  • Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inform Theor 28(2):129–137

    Article  MATH  MathSciNet  Google Scholar 

  • Maimon O, Rokach L (eds) (2010) Data mining and knowledge discovery handbook, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Mcculloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 5(4):115–133

    MATH  MathSciNet  Google Scholar 

  • Mikula S, Trotts I, Stone JM, Jones EG (2007) Internet-enabled high-resolution brain mapping and virtual microscopy. Neuroimage 35(1):9–15

    Article  Google Scholar 

  • Muth JF (1961) Rational expectations and the theory of price movements. Econometrica 29:315–335

    Article  Google Scholar 

  • Newell A, Simon H (1976) Computer science as empirical enquiry: symbols and search. Commun Assoc Comput Machine 19:113–126

    MathSciNet  Google Scholar 

  • Overmoyer BA, Lee JM, Lerwill MF (2011) Case 17-2011. A 49-year-old woman with a mass in the breast and overlying skin changes. N Engl J Med 364(23):2246–2254

    Article  Google Scholar 

  • Pazzani MJ (2000) Knowledge discovery from data? IEEE Trans Intell Syst Their Appl 15(2):10–12

    Article  Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386

    Article  MathSciNet  Google Scholar 

  • Sabah G (2011) Natural language understanding, where are we going? Where could we go? Comput J 54(9):1505–1513

    Article  Google Scholar 

  • Suh SC, Gurupur VP, Tanik MM (2011) Biomedical engineering: health care systems, technology and techniques. Springer, New York, NY

    Book  Google Scholar 

  • Tufféry S (2011) Overview of data mining. Data mining and statistics for decision making, Wiley series in computational statistics. Wiley, New York, NY, pp 1–24

    Book  Google Scholar 

  • Van Gerven MAJ, Taal BG, Lucas PJF (2008) Dynamic Bayesian networks as prognostic models for clinical patient management. J Biomed Inform 41(4):515–529

    Article  Google Scholar 

  • Vikram K, Upadhayaya N (2011) Data mining tools and techniques: a review. Comput Eng Intell Syst 2(8):31–39

    Google Scholar 

  • Wall WJ (2007) Liver transplantation for polycystic liver disease. N Engl J Med 356(15):1560

    Article  Google Scholar 

  • Wang XH, Zheng B, Good WF, King JL, Chang YH (1999) Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network. Int J Med Inform 54(2):115–126

    Article  Google Scholar 

  • Wickens CD (1984) Engineering psychology and human performance. Charles Merrill, Colombus, OH

    Google Scholar 

  • Xing DS, Girolami M (2007) Employing latent Dirichlet allocation for fraud detection in telecommunications. Pattern Recogn Lett 28(13):1727–1734

    Article  Google Scholar 

  • Xu L, Tan A, Winslow R, Geman D (2008) Merging microarray data from separate breast cancer studies provides a robust prognostic test. BMC Bioinforma 9(1):125–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1 Supplementary Materials

Below is the link to the electronic supplementary material.

6_LV444_152_MULTIMEDIA_DATA_MINING_HOLZINGER_2013_14_lowres.pdf (PDF 7.25 MB)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holzinger, A. (2014). Lecture 6 Multimedia Data Mining and Knowledge Discovery. In: Biomedical Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-04528-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04528-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04527-6

  • Online ISBN: 978-3-319-04528-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics