Skip to main content

Lecture 1 Introduction: Computer Science Meets Life Science

  • Chapter
  • First Online:
Biomedical Informatics
  • 2303 Accesses

Abstract

At the end of this first lecture, you:

  • would be fascinated to see our world in data.

  • would have a basic understanding of the building blocks of life.

  • would be familiar with some differences between Life Sciences and Computer Sciences.

  • would be aware of some possibilities and some limits of Biomedical Informatics.

  • would have some ideas of some future directions of Biomedical Informatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  Google Scholar 

  • Alagöz F, Calero Valdez A, Wilkowska W, Ziefle M, Dorner S, Holzinger A (2010) From cloud computing to mobile internet, from user focus to culture and hedonism—the crucible of mobile health care and wellness applications. ICPCA10 International Conference on Pervasive Computer Applications 2010, Maribor, Slovenia. IEEE, pp 1–9

    Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230

    Article  Google Scholar 

  • Aral S (2011) Identifying social influence: a comment on opinion leadership and social contagion in new product diffusion. Mark Sci 30(2):217–223

    Article  Google Scholar 

  • Auinger A, Ebner M, Nedbal D, Holzinger A (2009) Mixing content and endless collaboration—mashups: towards future personal learning environments. In: Stephanidis C (ed) Universal access in human-computer interaction HCI, part III: applications and services, HCI international 2009, vol 5616, Lecture notes in computer science (LNCS). Springer, Berlin, pp 14–23

    Google Scholar 

  • Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68

    Article  Google Scholar 

  • Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  Google Scholar 

  • Bardram JE (2004) Activity-based support for mobility and collaboration in ubiquitous computing. In: Baresi L (ed) Second international conference on ubiquitous mobile information and collaboration systems. Springer, Riga, Latvia, pp 169–184

    Google Scholar 

  • Bianchi DW (2012) From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges. Nat Med 18(7):1041–1051

    Article  Google Scholar 

  • Blum BI, Duncan K (1990) A history of medical informatics. Addison Wesley, Reading, MA

    Google Scholar 

  • Boal D (2012) Mechanics of the cell. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bobrow DG, Burchfiel JD, Murphy DL, Tomlinson RS (1972) TENEX, a paged time sharing system for the PDP-10. Commun ACM 15(3):135–143

    Article  Google Scholar 

  • Boguski MS, Mcintosh MW (2003) Biomedical informatics for proteomics. Nature 422(6928):233–237

    Article  Google Scholar 

  • Boulton G, Rawlins M, Vallance P, Walport M (2011) Science as a public enterprise: the case for open data. Lancet 377(9778):1633–1635

    Article  Google Scholar 

  • Brooks R (2001) The relationship between matter and life. Nature 409(6818):409–411

    Article  Google Scholar 

  • Brown T (2012) Introduction to genetics: a molecular approach. Garland, New York

    Google Scholar 

  • Burgin M, Eberbach E (2012) Evolutionary computaion and the processes of life: opening statement. ACM Ubiquity 2012:1–13

    Article  Google Scholar 

  • Cavin R, Lugli P, Zhirnov V (2012) Science and engineering beyond Moore’s Law. Proc IEEE 100(13):1720–1749

    Article  Google Scholar 

  • Chirikjian GS (2011) Modeling loop entropy. Methods Enzymol 487:99

    Article  Google Scholar 

  • Cooper SB, Loewe B, Sorbi A (2008) New computational paradigms: changing conceptions of what is computable. Springer, New York

    Book  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  Google Scholar 

  • Crick F, Watson J (1953) Molecular structure of nucleic acids. Nature 171(4356):737–738

    Article  Google Scholar 

  • Dill KA, Bromberg S, Yue K, Chan HS, Ftebig KM, Yee DP, Thomas PD (1995) Principles of protein folding—a perspective from simple exact models. Protein Sci 4(4):561–602

    Article  Google Scholar 

  • Drabovich AP, Pavlou MP, Batruch I, Diamandis EP (2013) Chapter 2—Proteomic and mass spectrometry technologies for biomarker discovery. In: Haleem JI, Timothy DV (eds) Proteomic and metabolomic approaches to biomarker discovery. Academic, Boston, pp 17–37

    Chapter  Google Scholar 

  • Fisher C, Lauría E, Chengalur-Smith S (2012) Introduction to information quality. AuthorHouse, Bloomington, IN

    Google Scholar 

  • Ge H, Walhout AJM, Vidal M (2003) Integrating ‘omic’information: a bridge between genomics and systems biology. Trends Genet 19(10):551–560

    Article  Google Scholar 

  • Gigerenzer G (2008) Gut feelings: short cuts to better decision making. Penguin, London

    Google Scholar 

  • Gromiha MM (2010) Protein bioinformatics. Elsevier, Amsterdam

    Google Scholar 

  • Hawking SW, Penrose R, Atiyah M (1996) The nature of space and time. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Hersey A, Senger S, Overington JP (2012) Open data for drug discovery: learning from the biological community. Future Med Chem 4(15):1865–1867

    Article  Google Scholar 

  • Holzinger A (2002) Basiswissen IT/Informatik Band 1: Informationstechnik. Wuerzburg, Vogel Buchverlag

    MATH  Google Scholar 

  • Holzinger A (2003a) Basiswissen IT/Informatik. Band 2: Informatik. Vogel Buchverlag, Wuerzburg

    Google Scholar 

  • Holzinger A (2003b) Finger instead of mouse: touch screens as a means of enhancing universal access. In: Carbonell N, Stephanidis C (eds) Universal access: theoretical perspectives, practice and experience, vol 2615, Lecture notes in computer science (LNCS). Springer, Berlin, pp 387–397

    Chapter  Google Scholar 

  • Holzinger A (2013) Human–computer interaction & knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Alfredo Cuzzocrea CK, Simos DE, Weippl E, Xu L (eds) Multidisciplinary research and practice for information systems, vol 8127, Lecture notes in computer science (LNCS). Springer, New York, pp 319–328

    Google Scholar 

  • Holzinger A, Basic L, Peischl B, Debevc M (2011a) Handwriting recognition on mobile devices: state of the art technology, usability and business analysis. Proceedings of the 8th international conference on electronic business and telecommunications, INSTICC, Sevilla, pp 219–227

    Google Scholar 

  • Holzinger A, Dorner S, Födinger M, Valdez A, Ziefle M (2010a) Chances of increasing youth health awareness through mobile wellness applications. In: Leitner G, Hitz M, Holzinger A (eds) HCI in work and learning, life and leisure, vol 6389, Lecture notes in computer science (LNCS). Springer, Berlin, pp 71–81

    Chapter  Google Scholar 

  • Holzinger A, Emberger W, Wassertheurer S, Neal L (2008a) Design, development and evaluation of online interactive simulation software for learning human genetics. Elektrotech Informationstechnik 125(5):190–196

    Article  Google Scholar 

  • Holzinger A, Kosec P, Schwantzer G, Debevc M, Hofmann-Wellenhof R, Frühauf J (2011b) Design and development of a mobile computer application to reengineer workflows in the hospital and the methodology to evaluate its effectiveness. J Biomed Inform 44(6):968–977

    Article  Google Scholar 

  • Holzinger A, Nischelwitzer A, Friedl S, Hu B (2010b) Towards life long learning: three models for ubiquitous applications. Wirel Commun Mob Comput 10(10):1350–1365

    Article  Google Scholar 

  • Holzinger A, Schaupp K, Eder-Halbedl W (2008b) An investigation on acceptance of ubiquitous devices for the elderly in an geriatric hospital environment: using the example of person tracking. In: Miesenberger K, Klaus J, Zagler W, Karshmer A (eds) Computers helping people with special needs, vol 5105, Lecture notes in computer science (LNCS). Springer, Berlin, pp 22–29

    Chapter  Google Scholar 

  • Holzinger A, Schlögl M, Peischl B, Debevc M (2010c) Preferences of handwriting recognition on mobile information systems in medicine: improving handwriting algorithm on the basis of real-life usability research (Best Paper Award). In: ICE-B 2010—ICETE the international joint conference on e-business and telecommunications, INSTICC, Athens, Greece, pp 120–123

    Google Scholar 

  • Holzinger A, Schwaberger K, Weitlaner M (2005) Ubiquitous computing for hospital applications: RFID-applications to enable research in real-life environments. In: 29th Annual international conference on computer software & applications (IEEE COMPSAC), IEEE, Edinburgh, UK, pp 19–20

    Google Scholar 

  • Holzinger A, Searle G, Peischl B, Debevc M (2012a) An answer to “Who needs a stylus?” on handwriting recognition on mobile devices. e-Business and telecommunications. Communications in computer and information science (CCIS), vol 314. Heidelberg, Springer, pp 156–167

    Google Scholar 

  • Holzinger A, Simonic K-M (eds) (2011) Information quality in e-Health, vol 7058, Lecture notes in computer science (LNCS). Springer, Heidelberg

    Google Scholar 

  • Holzinger A, Stocker C, Ofner B, Prohaska G, Brabenetz A, Hofmann-Wellenhof R (2013) Combining HCI, natural language processing, and knowledge discovery—potential of IBM content analytics as an assistive technology in the biomedical domain, vol 7947, Lecture notes in computer science (LNCS). Springer, Heidelberg, pp 13–24

    Google Scholar 

  • Holzinger A, Stocker C, Peischl B, Simonic K-M (2012b) On using entropy for enhancing handwriting preprocessing. Entropy 14(11):2324–2350

    Article  Google Scholar 

  • Hunter L (2009) The processes of life: an introduction to molecular biology. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Hurst M (2007) Data mining: text mining, visualization and social media [Online]. http://datamining.typepad.com/data_mining/2007/01/the_blogosphere.html. Accessed May 10 2011

  • Issaq HJ, Veenstra TD (2013) Chapter 1—Biomarker discovery: study design and execution. In: Haleem JI, Timothy DV (eds) Proteomic and metabolomic approaches to biomarker discovery. Academic, Boston, pp 1–16

    Chapter  Google Scholar 

  • Jeanquartier F, Holzinger A (2013) On visual analytics and evaluation in cell physiology: a case study. In: Cuzzocrea A, Kittl C, Simos DE, Weippl E, Xu L (eds) Multidisciplinary research and practice for information systems, vol 8127, Lecture notes in computer science (LNCS). Springer, Heidelberg, pp 495–502

    Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  Google Scholar 

  • Kiberstis PA (2012) All eyes on epigenetics. Science 335(6069):637

    Article  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246

    Article  Google Scholar 

  • Komaroff AL (1979) The variability and inaccuracy of medical data. Proc IEEE 67(9):1196–1207

    Article  Google Scholar 

  • Kuhn K, Knoll A, Mewes H, Schwaiger M, Bode A, Broy M, Daniel H, Feussner H, Gradinger R, Hauner H (2008) From molecules to populations. Methods Inf Med 47(4):283–295

    Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934

    Article  Google Scholar 

  • Mahajan V, Schoeman MEF (1977) The use of computers in hospitals: an analysis of adopters and nonadopters. Interfaces 7:95–107

    Article  Google Scholar 

  • Marth JD (2008) A unified vision of the building blocks of life. Nat Cell Biol 10(9):1015–1016

    Article  Google Scholar 

  • Mitchell S, Spiteri MD, Bates J, Coulouris G (2000) Context-aware multimedia computing in the intelligent hospital. ACM Press, Kolding, Denmark, pp 13–18

    Google Scholar 

  • Mitreva M (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  • Mojzsis SJ, Arrhenius G, Mckeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384(6604):55–59

    Article  Google Scholar 

  • Molloy JC (2011) The Open Knowledge Foundation: open data means better science. PLoS Biol 9(12):e1001195

    Article  Google Scholar 

  • Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117

    Google Scholar 

  • Neumann JV (1945) First draft of a report on the EDVAC. University of Pennsylvania—techical report, 49 pp

    Google Scholar 

  • Ng PC, Murray SS, Levy S, Venter JC (2009) An agenda for personalized medicine. Nature 461(7265):724–726

    Article  Google Scholar 

  • Okumoto S, Jones A, Frommer WB (2012) Quantitative imaging with fluorescent biosensors. Annu Rev Plant Biol 63:663–706

    Article  Google Scholar 

  • Patel VL, Kahol K, Buchman T (2011) Biomedical complexity and error. J Biomed Inform 44(3):387–389

    Article  Google Scholar 

  • Petz G, Karpowicz M, Fürschuß H, Auinger A, Stříteský V, Holzinger A (2013) Opinion mining on the Web 2.0—characteristics of user generated content and their impacts, vol 7947, Lecture notes in computer science (LNCS). Springer, Heidelberg, pp 35–46

    Google Scholar 

  • Petz G, Karpowicz M, Fürschuß H, Auinger A, Winkler S, Schaller S, Holzinger A (2012) On text preprocessing for opinion mining outside of laboratory environments. In: Huang R, Ghorbani A, Pasi G, Yamaguchi T, Yen N, Jin B (eds) Active media technology, vol 7669, Lecture notes in computer science (LNCS). Springer, Berlin, pp 618–629

    Chapter  Google Scholar 

  • Pevsner J (2009) Bioinformatics and functional genomics. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteome 73(11):2064–2077

    Article  Google Scholar 

  • Rouwkema J, Rivron NC, Van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441

    Article  Google Scholar 

  • Rowen L, Wong GKS, Lane RP, Hood L (2000) Intellectual property—publication rights in the era of open data release policies. Science 289(5486):1881

    Article  Google Scholar 

  • Sackett DL, Rosenberg WM, Gray J, Haynes RB, Richardson WS (1996) Evidence based medicine: what it is and what it isn’t. Br Med J 312(7023):71

    Article  Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333(6171):313–318

    Article  Google Scholar 

  • Schotte F, Lim MH, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN, Wulff M, Anfinrud PA (2003) Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300(5627):1944–1947

    Article  Google Scholar 

  • Schrödinger E (1944) What is life? The physical aspect of the living cell. Dublin Institute for Advanced Studies at Trinity College, Dublin

    Google Scholar 

  • Shadbolt N, O’hara K, Berners-Lee T, Gibbins N, Glaser H, Hall W, Schraefel M (2012) Open government data and the linked data web: Lessons from data. gov. uk. IEEE Intell Syst 27:16–24

    Article  Google Scholar 

  • Shehu A, Kavraki LE (2012) Modeling structures and motions of loops in protein molecules. Entropy 14(2):252–290

    Article  Google Scholar 

  • Shortliffe EH (2011) Biomedical informatics: defining the science and its role in health professional education. In: Holzinger A, Simonic K-M (eds) Information quality in e-Health, vol 7058, Lecture notes in computer science (LNCS). Springer, Heidelberg, pp 711–714

    Chapter  Google Scholar 

  • Simonic K-M, Holzinger A (2010) Zur Bedeutung von Information in der Medizin. OCG J 35(1):8

    Google Scholar 

  • Sittig DF (1994) Grand challenges in medical informatics. J Am Med Inform Assoc 1(5):412–413

    Article  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among dna fragments separated by gel-electrophoresis. J Mol Biol 98(3):503–517

    Article  Google Scholar 

  • Sperelakis N (2012) Cell physiology sourcebook: essentials of membrane biophysics, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Steinbuch K (1957) Informatik: Automatische Informationsverarbeitung. Standard Electric Lorenz (SEL) Nachrichten (4), p 171

    Google Scholar 

  • Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  Google Scholar 

  • Tanaka H (2010) Omics-based medicine and systems pathology a new perspective for personalized and predictive medicine. Methods Inf Med 49(2):173–185

    Article  Google Scholar 

  • Thompson M, Heneghan C (2012) BMJ OPEN DATA CAMPAIGN. We need to move the debate on open clinical trial data forward. Br Med J 345:e8351

    Article  Google Scholar 

  • Trent RJ (2012) Molecular medicine: genomics to personalized healthcare, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Trygve T (2011) Handbook of epigenetics. Academic, San Diego

    Google Scholar 

  • Varshney U (2009) Pervasive healthcare computing: EMR/EHR, wireless and health monitoring. Springer, New York

    Book  Google Scholar 

  • Walsh JE (1960) Analyzing medical data: some statistical considerations. IRE Trans Med Electron ME-7(4):362–366

    Article  Google Scholar 

  • Wassertheurer S, Holzinger A, Emberger W, Breitenecker F (2003) Design and development of interactive online-simulations for e-learning. In: Hohmann R (ed) Frontiers in simulation—17th symposium Simulationstechnik in Magdeburg (Germany). SCS European Publication, Delft, pp 97–105

    Google Scholar 

  • Weiser M (1991) The computer for the twenty-first century. Sci Am 265(3):94–104

    Article  Google Scholar 

  • Westra R, Tuyls K, Saeys Y, Nowé A (2007) Knowledge discovery and emergent complexity in bioinformatics. In: Tuyls K, Westra R, Saeys Y, Nowé A (eds) Knowledge discovery and emergent complexity in bioinformatics. Springer, Berlin, pp 1–9

    Chapter  Google Scholar 

  • Wiltgen M, Holzinger A (2005) Visualization in bioinformatics: protein structures with physicochemical and biological annotations. In: Zara J, Sloup J (eds) Central European multimedia and virtual reality conference (available in EG Eurographics Library). Czech Technical University (CTU), Prague, pp 69–74

    Google Scholar 

  • Wiltgen M, Holzinger A, Tilz GP (2007) Interactive analysis and visualization of macromolecular interfaces between proteins. In: Holzinger A (ed) HCI and usability for medicine and health care, vol 4799, Lecture notes in computer science (LNCS). Springer, Berlin, pp 199–212

    Chapter  Google Scholar 

  • Xiao WZ, Oefner PJ (2001) Denaturing high-performance liquid chromatography: a review. Hum Mutat 17(6):439–474

    Article  Google Scholar 

  • Yapijakis C (2009) Hippocrates of Kos, the father of clinical medicine, and Asclepiades of Bithynia, the father of molecular medicine. In Vivo 23(4):507–514

    Google Scholar 

  • Yildirim P, Ekmekci I, Holzinger A (2013) On knowledge discovery in open medical data on the example of the FDA Drug Adverse Event Reporting System for alendronate (Fosamax). In: Holzinger A, Pasi G (eds) Human-computer interaction and knowledge discovery in complex, unstructured, big data, vol 7947, Lecture notes in computer science (LNCS). Springer, Berlin, pp 195–206

    Chapter  Google Scholar 

  • Yip LY, Yong Chan EC (2013) Chapter 8—Gas chromatography/mass spectrometry-based metabonomics. In: Haleem JI, Timothy DV (eds) Proteomic and metabolomic approaches to biomarker discovery. Academic, Boston, pp 131–144

    Chapter  Google Scholar 

  • Zhang YT, Poon CCY (2010) Editorial note on bio, medical, and health informatics. IEEE Trans Inf Technol Biomed 14(3):543–545

    Article  Google Scholar 

  • Ziefle M, Rocker C, Holzinger A (2011) Medical technology in smart homes: exploring the user’s perspective on privacy, intimacy and trust. 35th Annual IEEE computer software and applications conference workshops (COMPSAC) 2011, IEEE, Munich, pp 410–415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1 Supplementary Materials

Below is the link to the electronic supplementary material.

1_LV444_152_INTRODUCTION_HOLZINGER_WS2013-14_lowres.pdf (PDF 10.1 MB)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holzinger, A. (2014). Lecture 1 Introduction: Computer Science Meets Life Science. In: Biomedical Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-04528-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04528-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04527-6

  • Online ISBN: 978-3-319-04528-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics