Skip to main content

The Harmonic Balance Method for Advanced Analysis and Design of Nonlinear Mechanical Systems

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 2

Abstract

As a tool for analyzing nonlinear large-scale structures, the harmonic balance (HB) method has recently received increasing attention in the structural dynamics community. However, its use was so far limited to the approximation and study of periodic solutions, and other methods as the shooting and orthogonal collocation techniques were usually preferred to further analyze these solutions and to study their bifurcations. This is why the present paper intends to demonstrate how one can take advantage of the HB method as an efficient alternative to the cited techniques. Two different applications are studied, namely the normal modes of a spacecraft and the optimization of the design of a vibration absorber. The interesting filtering feature of the HB method and the implementation of an efficient bifurcation tracking extension are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padmanabhan C, Singh, R (1995) Analysis of periodically excited non-linear systems by a parametric continuation technique. J Sound Vib 184(1):35–58

    Article  Google Scholar 

  2. Peeters M, Viguié R, Sérandour G, Kerschen G, Golinval J-C (2009) Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech Syst Signal Process 23(1):195–216

    Article  Google Scholar 

  3. Doedel EJ, Champneys AR, Fairgrieve TF, Kuznetsov YA, Sandstede B, Wang X (1997) auto97: continuation and bifurcation software for ordinary differential equations (with HomCont). User’s Guide, Concordia University, Montreal. http://indy.cs.concordia.ca

  4. Ascher U, Christiansen J, Russell RD (1979) A collocation solver for mixed order systems of boundary value problems. Math Comput 33(146):659–679

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuznetsov YA, Levitin VV (1995–1997) content: A multiplatform environment for analyzing dynamical systems. User’s Guide, Dynamical Systems Laboratory, CWI, Amsterdam. Available by anonymous ftp from ftp.cwi.nl/pub/CONTENT

  6. Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw 29(2):141–164

    Article  MATH  MathSciNet  Google Scholar 

  7. Dankowicz H, Schilder F (2011) An extended continuation problem for bifurcation analysis in the presence of constraints. J Comput Nonlinear Dyn 6(3):031003

    Article  Google Scholar 

  8. Kundert KS, Sangiovanni-Vincentelli A (1986) Simulation of nonlinear circuits in the frequency domain. IEEE Trans Comput Aided Des Integr Circuits Syst 5(4):521–535

    Article  Google Scholar 

  9. Cardona A, Coune T, Lerusse A, Geradin M (1994) A multiharmonic method for non-linear vibration analysis. Int J Numer Methods Eng 37(9):1593–1608

    Article  MATH  Google Scholar 

  10. von Groll G, Ewins DJ (2001) The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib 241(2):223–233

    Article  Google Scholar 

  11. Jaumouillé V, Sinou J-J, Petitjean B (2010) An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems—application to bolted structures. J Sound Vib 329(19):4048–4067

    Article  Google Scholar 

  12. Grolet A, Thouverez F (2013) Vibration of mechanical systems with geometric nonlinearities: solving Harmonic Balance Equations with Groebner basis and continuations methods. In: Proceedings of the Colloquium Calcul des structures et Modélisation CSMA, Giens

    Google Scholar 

  13. Arquier R (2007) Une méthode de calcul des modes de vibrations non-linéaires de structures, Ph.D. thesis, Université de la méditerranée (Aix-Marseille II), Marseille

    Google Scholar 

  14. Cochelin B, Vergez C (2009) A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J Sound Vib 324(1):243–262

    Article  Google Scholar 

  15. Petrov E, Ewins D (2003) Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks. J Turbomachinery 125(2):364–371

    Article  Google Scholar 

  16. Lau S, Zhang W-S (1992) Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method. J. Appl Mech 59:153

    Article  MATH  MathSciNet  Google Scholar 

  17. Pierre C, Ferri A, Dowell E (1985) Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method. J Appl Mech 52(4):958–964

    Article  MATH  Google Scholar 

  18. Cameron T, Griffin J (1989) An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J Appl Mech 56(1):149–154

    Article  MATH  MathSciNet  Google Scholar 

  19. Narayanan S, Sekar P (1998) A frequency domain based numeric–analytical method for non-linear dynamical systems. J Sound Vib 211(3):409–424

    Article  Google Scholar 

  20. Bonani F, Gilli M (1999) Analysis of stability and bifurcations of limit cycles in Chua’s circuit through the harmonic-balance approach. IEEE Trans Circuits Syst I Fundam Theory Appl 46(8):881–890

    Article  MATH  MathSciNet  Google Scholar 

  21. Duan C, Singh R (2005) Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque. J Sound Vib 285(4):803–834

    Article  Google Scholar 

  22. Kim T, Rook T, Singh R (2005) Super-and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method. J Sound Vib 281(3):965–993

    Article  MathSciNet  Google Scholar 

  23. Lazarus A, Thomas O (2010) A harmonic-based method for computing the stability of periodic solutions of dynamical systems. C R Méc 338(9):510–517

    Article  MATH  Google Scholar 

  24. Doedel EJ, Govaerts W, Kuznetsov YA (2003) Computation of periodic solution bifurcations in ODEs using bordered systems. SIAM J Numer Anal 41(2):401–435

    Article  MATH  MathSciNet  Google Scholar 

  25. Guckenheimer J, Myers M, Sturmfels B (1997) Computing Hopf bifurcations I. SIAM J Numer Anal 34(1):1–21

    Article  MATH  MathSciNet  Google Scholar 

  26. Noël J-P, Renson L, Kerschen G (2013) Experimental identification of the complex dynamics of a strongly nonlinear spacecraft structure. In: Proceedings of the ASME 2013 international design engineering technical conferences & computers and information in engineering conference, Portland

    Google Scholar 

  27. Vakakis AF, Manevitch LI, Mikhlin YV, Pilipchuk VN, Zevin AA (2008) Normal modes and localization in nonlinear systems. Wiley, London

    Google Scholar 

  28. Kerschen G, Peeters M, Golinval J-C, Vakakis, AF (2009) Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech Syst Signal Process 23(1):170–194

    Article  Google Scholar 

  29. Lyapunov A (1947) The general problem of the stability of motion. Princeton University Press, Princeton

    Google Scholar 

  30. Rosenberg R (1966) On nonlinear vibrations of systems with many degrees of freedom. Adv Appl Mech 9(155–242):6–1

    Google Scholar 

  31. Ormondroyd J, Den Hartog J (1928) Theory of the dynamic vibration absorber. Trans ASME 50:9–22

    Google Scholar 

  32. Detroux T, Masset L, Kerschen G (2013) Performance and robustness of the nonlinear tuned vibration absorber. In: Proceedings of the Euromech Colloquium new advances in the nonlinear dynamics and control of composites for smart engineering design, Ancona

    Google Scholar 

Download references

Acknowledgements

The authors Thibaut Detroux, Ludovic Renson and Gaetan Kerschen would like to acknowledge the financial support of the European Union (ERC Starting Grant NoVib 307265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Detroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Detroux, T., Renson, L., Kerschen, G. (2014). The Harmonic Balance Method for Advanced Analysis and Design of Nonlinear Mechanical Systems. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04522-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04522-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04521-4

  • Online ISBN: 978-3-319-04522-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics