Skip to main content

Tight sedimentary covers for CO2 sequestration

  • Conference paper
  • First Online:
Fracture Phenomena in Nature and Technology
  • 855 Accesses

Abstract

CO2 storage at depth is a promising way to reduce the spread of greenhouse gases in the atmosphere. Obviously the sedimentary cover should ensure the sealing of reservoirs. The latter are periodically fractured to allow injection and we propose a model to predict the maximum bearable gas pressure before reinitiating these fractures in the caprock or incidentally along the interface between the reservoir and the caprock. The method is based on a twofold criterion merging energy and stress conditions. Specific conditions related to the gas pressure acting on the crack faces and the swelling of the reservoir due to the pressure rise require taking into account several terms in addition to the classical singular term that describes the state of stress at the tip of the main crack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cook J, Gordon JE (1964) A mechanism for the control of crack propagation in all brittle systems. Proc R Soc 282A:508–520

    Google Scholar 

  • Detournay E (1999) Fluid and solid singularities at the tip of a fluid-driven fracture. In: Durban D, Pearson JRA (eds) Proceedings of the IUTAM symposium on Non-linear singularities in deformation and flow. Kluwer, Dordrecht

    Google Scholar 

  • GIEC (2005) Special report on carbon dioxide capture and storage: technical summary

    Google Scholar 

  • He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25:1053–1067

    Google Scholar 

  • Hutchinson J, Mear ME, Rice JR (1987) Crack paralleling an interface between dissimilar materials. J Appl Mech 54:828–832

    Google Scholar 

  • Karnaeva E (2012) Amorfage et propagation des reseaux de fracture dans le context du stockage de CO2: etancheite des cou- vertures. PhD thesis, University Pierre and Marie Curie, Paris, France

    Google Scholar 

  • Karnaeva E, Leguillon D, Baroni A, Putot C (2012) Fracture propagation in a multilayered caprock, associated with CO2 injection. Submitted to Int. J. Rock Mech. and Min, Sci

    Google Scholar 

  • Labossiere PEW, Dunn ML (1999) Stress intensities at interface corners in anisotropic bimaterials. Eng Fract Mech 62:555–575

    Google Scholar 

  • Leguillon D, Sanchez-PalenciaE (1987) Computation of singular solutions in elliptic problems and elasticity. Wiley, New York

    Google Scholar 

  • Leguillon D, Lacroix C, Martin E (2000) Interface debonding ahead of a primary crack. J Mech Phys Solids 48:2137–2161

    Google Scholar 

  • Leguillon D (2002) Strength or toughness ? A criterion for crack onset at a notch. Eur J Mech A/Solids 21:61–72

    Google Scholar 

  • Leguillon D, Martin E (2012b) The strengthening effect caused by an elastic contrast—part I: the bimaterial case. Int J Fract 179:157–167

    Google Scholar 

  • Leguillon D, Martin E (2012a) Crack nucleation at stress concentration points in composite materials—application to the crack deflection by an interface. To appear in Mathematical Methods and Models in Composites, Computational and Experimental Methods in Structures, V. Mantic Ed., Imperial College Press, London

    Google Scholar 

  • Leguillon D, Sanchez-Palencia E (1992) Fracture in Heterogeneous materials, weak and strong singularities. In: Ladeveze P, Zienkiewicz OC (eds) New advances in computational structural mechanics. Studies in applied mechanics, 32 Elsevier, Amsterdam, pp 423–434

    Google Scholar 

  • Loret B, Radi E (2001) The effect of inertia on crack growth in poroelastic fluid saturated media. J Mech Phys Solids 49:995–1020

    Google Scholar 

  • Mishuris G, Wrobel M, Linkov A (2012) On modeling hydraulic fracture in proper variables: stiffness, accuracy, sensitivity. Int J Eng Sci 61:10–23

    Google Scholar 

  • Segall P, Fitzgerald SD (1998) A note on induced stress changes in hydrocarbon and geothermal reservoirs. Techtonophysics 289:117–128

    Google Scholar 

  • Terzaghi K (1936) The shearing resistance of saturated soils. In: Proceedings of the first international conference of soil mechanics and foundation engineering, Cambridge

    Google Scholar 

  • Van Dyke M (1964) Perturbation methods in fluid mechanics. Academic Press, New York

    Google Scholar 

  • Williams ML (1959) The stress around a fault or crack in dissimilar media. Bull Seismol Soc Am 49:199–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leguillon .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Let us consider \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} \) and \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{g} \) solutions to an elastic problem locally homogeneous to 0 in the vicinity of the main crack tip (Fig. 1), i.e. such that the equilibrium equation has a vanishing right hand side member and such that the boundary conditions are vanishing as well in the vicinity under consideration. Then the following integral is path independent

$$ \uppsi(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} ,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{g} ) = \frac{1}{2}\int\limits_{\varGamma } {\left[ {\underline{\underline{\sigma }} \left( {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} } \right) .\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{N} .\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{g} - \underline{\underline{\sigma }} \left( {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{g} } \right).\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{N} .\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} } \right]{\text{d}}s} $$

Here Γ is any contour starting on one face and finishing on the other face of the main crack (Fig. 1) and N the normal to this contour pointing toward the crack tip.

Then if \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} \) can be expanded in a Williams series

$$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} \left( {x_{1} ,x_{2} } \right) = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{C} + kr^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta ) + \cdots $$

The Generalized Stress Intensity Factor (GSIF) k is given by (Leguillon and Sanchez-Palencia 1987; Labossiere and Dunn 1999)

$$ k = \frac{{\uppsi\left( {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} \left( {x_{1} x_{2} } \right),\,r^{ - \lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u}^{ - } (\theta )} \right)}}{{\uppsi\left( {r^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta ),\,r^{ - \lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u}^{ - } (\theta )} \right)}} $$

where \( r^{ - \lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u}^{ - } (\theta ) \) is the so-called dual mode to \( r^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta ) \), it plays the role of an extraction function. Indeed, in 2D if λ is solution to the eigenvalue problem with and \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta ) \) as eigenmode, then \( -\uplambda \) is also a solution with its own eigenvector \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u}^{ - } (\theta ) \) (Leguillon and Sanchez-Palencia 1987). The primal mode has a finite energy in the vicinity of the crack tip while the dual mode has not but it plays no role since the contour Γ encompasses the crack tip at a finite distance.

Then, according to (13)

$$ \begin{aligned} k & = \frac{{\uppsi\left( {\underline{{\hat{U}}}^{0} \left( {x_{1} x_{2} } \right),\,r^{ - \lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u}^{ - } (\theta )} \right)}}{{\uppsi\left( {r^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta ),\,r^{ - \lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u}^{ - } (\theta )} \right)}}; \\ T & = \frac{{\uppsi\left( {\underline{{\hat{U}}}^{0} \left( {x_{1} x_{2} } \right),\,r^{ - 1} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t}^{ - } (\theta )} \right)}}{{\uppsi\left( {r\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} (\theta ),\,r^{ - 1} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t}^{ - } (\theta )} \right)}} \\ \end{aligned} $$

Appendix 2

Let us consider now two solutions \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{0} \) and \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{{l_{d/p} }} \) to an elastic problem, again locally homogeneous to 0 in the vicinity of the main crack tip, corresponding respectively to the initial state illustrated in Fig. 1 and to a final state embedding a crack extension (deflection or penetration) with length \( l_{d/p} \) (Fig. 2). Then the change in potential energy between these two states is given by

$$ \delta W =\uppsi\left( {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{{l_{d/p} }} (x_{1} ,x_{2} ),\,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{0} (x_{1} ,x_{2} )} \right) $$

The term \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{0} \) admits a Williams expansion

$$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{0} \left( {x_{1} ,x_{2} } \right) = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{C} + kr^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta ) + \cdots $$

As a consequence of matching conditions the inner expansion of \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{{l_{d/p} }} \) is

$$ \begin{gathered} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{{l_{d/p} }} (x_{1} ,x_{2} ) = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{C} + kl_{d/p}^{\lambda } \left[ {\rho^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta ) + \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{V}_{d/p}^{1} (y_{1} ,y_{2} )} \right] \hfill \\ + \cdots \quad {\text{with}}\;{\text{y}}_{i} = x_{i} /l\;{\text{and}}\;\rho = r/l \hfill \\ \end{gathered} $$

where \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{V}_{d/p}^{1} \) is solution to an elastic problem posed on the unbounded domain spanned by the y i ’s, with an homogeneous equilibrium equation, vanishing forces along the mother crack faces, a decay to 0 at infinity and prescribed forces on the two faces \( \gamma_{d/p} \) (with normal \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}_{d/p} \)) of the crack extension

$$ \underline{\underline{\sigma }} \left( {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{V}_{d/p}^{1} (y_{1} ,y_{2} )} \right) \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}_{d/p} = - \underline{\underline{\sigma }} \left( {\rho^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta )} \right) \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}_{d/p} $$

Equations for \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{V}_{d/p}^{2} \), \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{V}_{d/p}^{3} \) and \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{V}_{d/p}^{4} \) (see (14)) can be derived in the same way.

And then

$$ \begin{aligned} \delta W & = A_{d/p} k^{2} l^{2\lambda } + \cdots \quad {\text{with}}\;A_{d/p} \\ & { = \psi }\left( {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{V}_{d/p}^{1} (y_{1} ,y_{2} ),\,\rho^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta )} \right) \\ \end{aligned} $$

The difficulty in the present analysis comes from the non homogeneous conditions due to the pressure pco 2 acting on the main crack walls and on the crack extension and the poro-elastic behaviour in the reservoir triggering a swelling. Nevertheless these non homogeneous conditions are taken into account by the special terms (9) and (11), finally all calculations give

$$ A_{d/p} { = \psi }\left( {\underline{{\hat{V}}}_{d/p}^{1} (y_{1} ,y_{2} ),\,\rho^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta )} \right) $$
$$ \begin{aligned} B_{d/p} \text{ = } &\uppsi\left( {\underline{{\hat{V}}}_{d/p}^{2} (y_{1} ,y_{2} ),\,\rho^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta )} \right) \\ & +\uppsi\left( {\underline{{\hat{V}}}_{d/p}^{1} (y_{1} ,y_{2} ),\,\rho \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} (\theta )} \right) \\ \end{aligned} $$
$$ \begin{aligned} C_{d/p} \text{ = } &\uppsi\left( {\underline{{\hat{V}}}_{d/p}^{3} (y_{1} ,y_{2} ),\,\rho^{\lambda } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} (\theta )} \right) \\ & +\uppsi\left( {\underline{{\hat{V}}}_{d/p}^{1} (y_{1} ,y_{2} ),\,\rho \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\upsilon } (\theta )} \right) \\ & + \frac{1}{2}\int\limits_{{\gamma_{d/p} }} {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}_{d/p} \cdot \underline{{\hat{V}}}_{d/p}^{1} (y_{1} ,y_{2} ){\text{d}}S} \\ \end{aligned} $$
$$ D_{d/p} { = \psi }\left( {\underline{{\hat{V}}}_{d/p}^{3} (y_{1} ,y_{2} ),\,\rho \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} (\theta )} \right) $$
$$ \begin{aligned} E_{d/p} \text{ = } &\uppsi\left( {\underline{{\hat{V}}}_{d/p}^{3} (y_{1} ,y_{2} ),\,\rho \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\upsilon } (\theta )} \right) \\ & + \frac{1}{2}\int\limits_{{\gamma_{d/p} }} {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}_{d/p} \cdot \underline{{\hat{V}}}_{d/p}^{3} (y_{1} ,y_{2} ){\text{d}}S} \\ \end{aligned} $$
$$ \begin{aligned} F_{d/p} \text{ = } &\uppsi\left( {\underline{{\hat{V}}}_{d/p}^{2} (y_{1} ,y_{2} ),\,\rho \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\upsilon } (\theta )} \right) \\ & +\uppsi\left( {\underline{{\hat{V}}}_{d/p}^{3} (y_{1} ,y_{2} ),\,\rho \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} (\theta )} \right) \\ & + \frac{1}{2}\int\limits_{{\gamma_{d/p} }} {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}_{d/p} \cdot \underline{{\hat{V}}}_{d/p}^{2} (y_{1} ,y_{2} ){\text{d}}S} \\ \end{aligned} $$

Of course, under the simplifying assumption that pco 2 does not act on the crack extension faces, the integrals on \( \gamma_{d/p} \) disappear.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Leguillon, D., Karnaeva, E., Baroni, A., Putot, C. (2014). Tight sedimentary covers for CO2 sequestration. In: Bigoni, D., Carini, A., Gei, M., Salvadori, A. (eds) Fracture Phenomena in Nature and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04397-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04397-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04396-8

  • Online ISBN: 978-3-319-04397-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics