Skip to main content

Arithmetic Aspects of Bianchi Groups

  • Conference paper
Computations with Modular Forms

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 6))

Abstract

We discuss several arithmetic aspects of Bianchi groups, especially from a computational point of view. In particular, we consider computing the homology of Bianchi groups together with the Hecke action, connections with automorphic forms, abelian varieties, Galois representations and the torsion in the homology of Bianchi groups. Along the way, we list several open problems and conjectures, survey the related literature, presenting concrete examples and numerical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that a gap in Humbert’s proof was filled in by Grunewald and Kühnlein in [GK98].

  2. 2.

    These are the cusps that correspond to non-trivial elements of the class group.

  3. 3.

    In this case, Scarth exhibits in [Sca03] a finite-index subgroup which splits as an amalgamated product.

  4. 4.

    Recall that a subgroup Γ is of congruence type if it contains the kernel of the surjection \(\mathrm{PSL}_{2}(\mathcal{O}) \rightarrow \mathrm{PSL}_{2}(\mathcal{O} / I)\) for some ideal I of \(\mathcal{O}\).

  5. 5.

    In fact, the case of symmetric spaces of rank one was done first by Serre in [Serr70], to investigate the Congruence Subgroup Problem for Bianchi groups, and served as a prototype for the general construction.

  6. 6.

    Segal records the following in [Seg12] about these computations of Grunewald:

    “Fritz’s gentle manner concealed a steely determination when it came to serious computation. He was banned for a while from using the Bielefeld University mainframe after his program had monopolized the entire system: in order to carry out the heavy-duty computation required for this project, he had devised a routine that managed to bypass the automatic quota checks.”

  7. 7.

    Note that beyond degree two, the homology groups are exclusively torsion at the primes 2 and 3. Their explicit structure depends on the number of conjugacy classes of the finite subgroups of the Bianchi group, see Rahm [Rahb].

  8. 8.

    This is also known as the Eichler-Shimura-Harder Isomorphism. However Prof. Harder advised us not to use this name.

  9. 9.

    The term newform is used, both in elliptic and Bianchi setting, in its usual sense, that is, cuspidal, primitive and new eigenform.

  10. 10.

    The group \(\mathcal{K}_{0}(\mathfrak{n})\) is defined as . Notice that \(\mathrm{GL}_{2}(\mathcal{O}_{K}) \cap \mathcal{K}_{0}(\mathfrak{n})\) is the standard congruence subgroup \(\varGamma_{0}(\mathfrak{n})\).

  11. 11.

    Note that if p≤max{k,}, then \(V_{k,\ell}(\mathcal{O} / (p))\) is a reducible \(\mathrm{PSL}_{2}(\mathcal{O} / (p))\)-module and its coinvariants typically give rise to p-torsion in the homology.

  12. 12.

    As we mentioned in the Introduction, Scholze just released a paper [Scho] which proves this belief to be true!

References

  1. M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, I. Samet, On the growth of Betti numbers of locally symmetric spaces. C. R. Math. Acad. Sci. Paris 349, 831–835 (2011)

    MATH  MathSciNet  Google Scholar 

  2. M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, I. Samet, On the growth of L 2-invariants for sequences of lattices in Lie groups. Preprint (2012)

    Google Scholar 

  3. R. Alperin, Homology of \({\rm SL}_{2}(\mathbb{Z}[\omega])\). Comment. Math. Helv. 55, 364–377 (1980)

    MATH  MathSciNet  Google Scholar 

  4. M.T. Aranés, Modular symbols over number fields. PhD thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/35128/

  5. T. Asai, On the Doi-Naganuma lifting associated with imaginary quadratic fields. Nagoya Math. J. 71, 149–167 (1978)

    MATH  MathSciNet  Google Scholar 

  6. A. Ash, Galois representations and cohomology of \({\rm GL}(n,\mathbb{Z})\), in Séminaire de Théorie des Nombres, Paris, 1989–1990. Progr. Math., vol. 102 (Birkhäuser, Boston, 1992), pp. 9–22

    Google Scholar 

  7. A. Ash, Unstable cohomology of \({\rm SL}(n,\mathcal{O})\). J. Algebra 167, 330–342 (1994)

    MATH  MathSciNet  Google Scholar 

  8. A. Ash, L. Rudolph, The modular symbol and continued fractions in higher dimensions. Invent. Math. 55, 241–250 (1979)

    MATH  MathSciNet  Google Scholar 

  9. A. Ash, G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues. J. Reine Angew. Math. 365, 192–220 (1986)

    MATH  MathSciNet  Google Scholar 

  10. A. Ash, P.E. Gunnells, M. McConnell, Cohomology of congruence subgroups of \({\rm SL}_{4}(\mathbb{Z})\). III. Math. Comput. 79, 1811–1831 (2010)

    MATH  MathSciNet  Google Scholar 

  11. P. Bending, Curves of genus 2 with \(\sqrt{2}\) multiplication. PhD thesis, University of Oxford, 1998

    Google Scholar 

  12. T. Berger, An Eisenstein ideal for imaginary quadratic fields. PhD thesis, University of Michigan, 2005

    Google Scholar 

  13. T. Berger, Denominators of Eisenstein cohomology classes for \({\rm GL}_{2}\) over imaginary quadratic fields. Manuscr. Math. 125, 427–470 (2008)

    MATH  Google Scholar 

  14. T. Berger, G. Harcos, -adic representations associated to modular forms over imaginary quadratic fields. Int. Math. Res. Not. 2007, rnm113 (2000), 16

    Google Scholar 

  15. T. Berger, K. Klosin, A deformation problem for Galois representations over imaginary quadratic fields. J. Inst. Math. Jussieu 8, 669–692 (2009)

    MATH  MathSciNet  Google Scholar 

  16. T. Berger, K. Klosin, An R=T theorem for imaginary quadratic fields. Math. Ann. 349, 675–703 (2011)

    MATH  MathSciNet  Google Scholar 

  17. T. Berger, K. Klosin, On deformation rings of residually reducible Galois representations and R=T theorems. Math. Ann. 355, 481–518 (2013)

    MATH  MathSciNet  Google Scholar 

  18. N. Bergeron, A. Venkatesh, The asymptotic growth of torsion homology for arithmetic groups. J. Inst. Math. Jussieu 12, 391–447 (2013)

    MATH  MathSciNet  Google Scholar 

  19. E. Berkove, The integral cohomology of the Bianchi groups. Trans. Am. Math. Soc. 358, 1033–1049 (2006)

    MATH  MathSciNet  Google Scholar 

  20. L. Bianchi, Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginari. Math. Ann. 40, 332–412 (1892) [Opere Matematiche, vol. I.1, pp. 270–373]

    MATH  MathSciNet  Google Scholar 

  21. J. Blume-Nienhaus, Lefschetzzahlen für Galois-Operationen auf der Kohomologie arithmetischer Gruppen. PhD thesis, Universität Bonn Mathematisches Institut, 1992

    Google Scholar 

  22. A. Borel, J.-P. Serre, Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973)

    MATH  MathSciNet  Google Scholar 

  23. A. Borel, N.R. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Annals of Mathematics Studies, vol. 94 (Princeton University Press, Princeton, 1980)

    MATH  Google Scholar 

  24. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    MATH  MathSciNet  Google Scholar 

  25. C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over \(\mathbb{Q}\): wild 3-adic exercises. J. Am. Math. Soc. 14, 843–939 (2001)

    MATH  MathSciNet  Google Scholar 

  26. J. Britto, On the construction of non-congruence subgroups. Acta Arith. 13 (1977)

    Google Scholar 

  27. A. Brumer, The rank of J 0(N). Astérisque 228, 41–68 (1995)

    MathSciNet  Google Scholar 

  28. A.M. Brunner, A two-generator presentation for the Picard group. Proc. Am. Math. Soc. 115, 45–46 (1992)

    MATH  MathSciNet  Google Scholar 

  29. A.M. Brunner, Y.W. Lee, N.J. Wielenberg, Polyhedral groups and graph amalgamation products. Topol. Appl. 20, 289–304 (1985)

    MATH  MathSciNet  Google Scholar 

  30. K. Buzzard, F. Diamond, F. Jarvis, On Serre’s conjecture for mod Galois representations over totally real fields. Duke Math. J. 55, 105–161 (2010)

    MathSciNet  Google Scholar 

  31. J. Bygott, Modular forms and modular symbols over imaginary quadratic fields. PhD thesis, University of Exeter, 1998. http://hdl.handle.net/10871/8322

  32. F. Calegari, M. Emerton, Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms. Ann. Math. 170, 1437–1446 (2009)

    MATH  MathSciNet  Google Scholar 

  33. F. Calegari, D. Geraghty, Modularity lifting beyond the Taylor-Wiles method. http://arxiv.org/abs/1207.4224

  34. F. Calegari, D. Geraghty, Modularity lifting beyond the Taylor-Wiles method, II. http://arxiv.org/abs/1209.6293

  35. F. Calegari, B. Mazur, Nearly ordinary Galois deformations over arbitrary number fields. J. Inst. Math. Jussieu 8, 99–177 (2009)

    MATH  MathSciNet  Google Scholar 

  36. F. Calegari, A. Venkatesh, Towards a torsion Jacquet-Langlands correspondence. http://arxiv.org/abs/1212.3847

  37. G. Chenevert, Exponential sums, hypersurfaces with many symmetries and Galois representations. PhD thesis, McGill University, 2008

    Google Scholar 

  38. P.M. Cohn, A presentation of \({\rm SL}_{2}\) for Euclidean imaginary quadratic number fields. Mathematika 15, 156–163 (1968)

    MATH  MathSciNet  Google Scholar 

  39. S. Comalada, Elliptic curves with trivial conductor over quadratic fields. Pac. J. Math. 144, 237–258 (1990)

    MATH  MathSciNet  Google Scholar 

  40. S. Comalada, E. Nart, Courbes elliptiques avec bonne réduction partout. C. R. Acad. Sci. Paris Sér. I Math. 305, 223–224 (1987)

    MATH  MathSciNet  Google Scholar 

  41. J.E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. Compos. Math. 51, 275–324 (1984)

    MATH  MathSciNet  Google Scholar 

  42. J.E. Cremona, Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields. J. Lond. Math. Soc. 45, 404–416 (1992)

    MATH  MathSciNet  Google Scholar 

  43. J.E. Cremona, Algorithms for Modular Elliptic Curves, 2nd edn. (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  44. J.E. Cremona, Modular forms and Hecke operators over number fields (in preparation)

    Google Scholar 

  45. J.E. Cremona, Modular forms and elliptic curves over imaginary quadratic fields. http://homepages.warwick.ac.uk/~masgaj/papers/mfiqf.pdf

  46. J.E. Cremona, M.P. Lingham, Finding all elliptic curves with good reduction outside a given set of primes. Exp. Math. 16, 303–312 (2007)

    MATH  MathSciNet  Google Scholar 

  47. L. Dieulefait, L. Guerberoff, A. Pacetti, Proving modularity for a given elliptic curve over an imaginary quadratic field. Math. Comput. 79, 1145–1170 (2009)

    MathSciNet  Google Scholar 

  48. B. Edixhoven, C. Khare, Hasse invariant and group cohomology. Doc. Math. 8, 43–50 (2003)

    MATH  MathSciNet  Google Scholar 

  49. N. Elkies, A. Kumar, K3 surfaces and equations for Hilbert modular surfaces. http://arxiv.org/abs/1209.3527

  50. J. Elstrodt, F. Grunewald, J. Mennicke, On the group \({\rm PSL}_{2}(\mathbb{Z}[{\mathrm {i}}])\), in Number Theory Days, 1980, Exeter, 1980. London Math. Soc. Lecture Note Ser., vol. 56 (Cambridge Univ. Press, Cambridge, 1982), pp. 255–283

    Google Scholar 

  51. J. Elstrodt, F. Grunewald, J. Mennicke, \({\rm PSL}(2)\) over imaginary quadratic integers, in Arithmetic Conference, Metz, 1981. Astérisque, vol. 94 (Soc. Math. France, Paris, 1982), pp. 43–60

    Google Scholar 

  52. J. Elstrodt, F. Grunewald, J. Mennicke, Groups Acting on Hyperbolic Space. Springer Monographs in Mathematics Harmonic Analysis and Number Theory (Springer, Berlin, 1998)

    MATH  Google Scholar 

  53. L.M. Figueiredo, Cusp forms of weight 2 over an imaginary quadratic field as homology classes. Mat. Contemp. 14, 37–44 (1998)

    MATH  MathSciNet  Google Scholar 

  54. L.M. Figueiredo, Serre’s conjecture for imaginary quadratic fields. Compos. Math. 118, 103–122 (1999)

    MATH  MathSciNet  Google Scholar 

  55. B. Fine, The structure of \({\rm PSL(2,R)}\); R, the ring of integers in a Euclidean quadratic imaginary number field, in Discontinuous Groups and Riemann Surfaces, Proc. Conf., Univ. Maryland, College Park, Md., 1973. Ann. of Math. Studies, vol. 79 (1974), pp. 145–170

    Google Scholar 

  56. B. Fine, Algebraic Theory of the Bianchi Groups. Monographs and Textbooks in Pure and Applied Mathematics, vol. 129 (Marcel Dekker Inc., New York, 1989)

    MATH  Google Scholar 

  57. B. Fine, Subgroup presentations without coset representatives, in Topology and Combinatorial Group Theory, Hanover, NH, 1986/1987; Enfield, NH, 1988. Lecture Notes in Math., vol. 1440 (Springer, Berlin, 1990), pp. 59–73

    Google Scholar 

  58. B. Fine, C. Frohman, Some amalgam structures for Bianchi groups. Proc. Am. Math. Soc. 102, 221–229 (1988)

    MATH  MathSciNet  Google Scholar 

  59. T. Finis, F. Grunewald, P. Tirao, The cohomology of lattices in \({\rm SL}(2,\mathbb{C})\). Exp. Math. 19, 29–63 (2010)

    MATH  MathSciNet  Google Scholar 

  60. D. Flöge, Zur Struktur der \({\rm PSL}_{2}\) über einigen imaginär-quadratischen Zahlringen. Math. Z. 183, 255–279 (1983)

    MATH  MathSciNet  Google Scholar 

  61. R.H. Fox, Free differential calculus. I. Derivation in the free group ring. Ann. Math. 57, 547–560 (1953)

    Google Scholar 

  62. S. Friedberg, On Maass wave forms and the imaginary quadratic Doi-Naganuma lifting. Math. Ann. 263, 483–508 (1983)

    MATH  MathSciNet  Google Scholar 

  63. S. Friedberg, Lectures on Modular Forms and Theta Series Correspondences (Middle East Technical University Foundation, Ankara, 1985)

    MATH  Google Scholar 

  64. E. Ghate, Critical values of the twisted tensor L-function in the imaginary quadratic case. Duke Math. J. 96, 595–638 (1999)

    MATH  MathSciNet  Google Scholar 

  65. F. Grunewald, S. Kühnlein, On the proof of Humbert’s volume formula. Manuscr. Math. 95, 431–436 (1998)

    MATH  Google Scholar 

  66. F. Grunewald, J. Mennicke, \({\rm SL}(2,\mathcal{O})\) and elliptic curves (1978)

    Google Scholar 

  67. F.J. Grunewald, J. Schwermer, Arithmetic quotients of hyperbolic 3-space, cusp forms and link complements. Duke Math. J. 48, 351–358 (1981)

    MATH  MathSciNet  Google Scholar 

  68. F.J. Grunewald, J. Schwermer, Free nonabelian quotients of \({\rm SL}_{2}\) over orders of imaginary quadratic numberfields. J. Algebra 69, 298–304 (1981)

    MATH  MathSciNet  Google Scholar 

  69. F. Grunewald, J. Schwermer, On the concept of level for subgroups of \({\rm SL}_{2}\) over arithmetic rings. Isr. J. Math. 114, 205–220 (1999)

    MATH  MathSciNet  Google Scholar 

  70. F. Grunewald, H. Helling, J. Mennicke, \({\rm SL}_{2}\) over complex quadratic number fields. I. Algebra Log. 17, 512–580, 622 (1978)

    Google Scholar 

  71. F. Grunewald, A. Jaikin-Zapirain, P.A. Zalesskii, Cohomological goodness and the profinite completion of Bianchi groups. Duke Math. J. 144, 53–72 (2008)

    MATH  MathSciNet  Google Scholar 

  72. P.E. Gunnells, Modular symbols for \(\mathbb{Q}\)-rank one groups and Voronoi reduction. J. Number Theory 75, 198–219 (1999)

    MATH  MathSciNet  Google Scholar 

  73. P.E. Gunnells, Computing Hecke eigenvalues below the cohomological dimension. Exp. Math. 9, 351–367 (2000)

    MATH  MathSciNet  Google Scholar 

  74. P.E. Gunnells, Modular symbols and Hecke operators, in Algorithmic Number Theory, Leiden, 2000. Lecture Notes in Comput. Sci., vol. 1838 (Springer, Berlin, 2000), pp. 347–357

    Google Scholar 

  75. P.E. Gunnels, Lectures on computing cohomology of aritmetic groups, in Computations with Modular Forms. Contributions in Mathematical and Computational Sciences, vol. 6 (2014). doi:10.1007/978-3-319-03847-6_1

    Google Scholar 

  76. P.E. Gunnells, M. McConnell, Hecke operators and \(\mathbb{Q}\)-groups associated to self-adjoint homogeneous cones. J. Number Theory 100, 46–71 (2003)

    MATH  MathSciNet  Google Scholar 

  77. P.E. Gunnells, D. Yasaki, Modular forms and elliptic curves over the cubic field of discriminant −23. Int. J. Number Theory 9(1), 53–76 (2013)

    MATH  MathSciNet  Google Scholar 

  78. P.E. Gunnells, F. Hajir, D. Yasaki, Modular forms and elliptic curves over the field of fifth roots of unity. With an appendix by mark. Watkins. Exp. Math. 22(2), 203–216 (2013)

    MATH  MathSciNet  Google Scholar 

  79. G. Harder, On the cohomology of \({\rm SL}(2,\mathcal{O})\), in Lie Groups and Their Representations, Budapest, 1971 (1975), pp. 139–150

    Google Scholar 

  80. G. Harder, Eisenstein cohomology of arithmetic groups. the case \({\rm GL}_{2}\). Invent. Math. 89, 37–118 (1987)

    MATH  MathSciNet  Google Scholar 

  81. G. Harder, Cohomology of arithmetic groups. Online lecture notes

    Google Scholar 

  82. M. Harris, D. Soudry, R. Taylor, l-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to \({\rm GSp}_{4}(\mathbb{Q})\). Invent. Math. 112, 377–411 (1993)

    MATH  MathSciNet  Google Scholar 

  83. A. Hatcher, Bianchi orbifolds of small discriminant (1983). http://www.math.cornell.edu/~hatcher/bianchi.html

  84. G. Humbert, Sur la mesure des classes d’Hermite de discriminant donné dans un corps quadratique imaginaire. C. R. Acad. Sci. Paris 169, 407–414 (1919)

    MATH  Google Scholar 

  85. H. Ishii, The nonexistence of elliptic curves with everywhere good reduction over certain imaginary quadratic fields. J. Math. Soc. Jpn. 31, 273–279 (1979)

    MATH  Google Scholar 

  86. H. Ishii, The nonexistence of elliptic curves with everywhere good reduction over certain quadratic fields. Jpn. J. Math. 12, 45–52 (1986)

    MATH  Google Scholar 

  87. A. Jorza, p-adic families and Galois representations for \({\rm GSp}(4)\) and \({\rm GL}(2)\). Math. Res. Lett. 19, 1–10 (2012)

    MathSciNet  Google Scholar 

  88. C. Khare, J.-P. Wintenberger, Serre’s modularity conjecture, in Proceedings of the ICM, India, vol. 2 (2010), pp. 280–293

    Google Scholar 

  89. M. Kida, Good reduction of elliptic curves over imaginary quadratic fields. J. Théor. Nr. Bordx. 13, 201–209 (2001)

    MATH  MathSciNet  Google Scholar 

  90. M. Kida, Potential good reduction of elliptic curves. J. Symb. Comput. 34, 173–180 (2002)

    MATH  MathSciNet  Google Scholar 

  91. S. Kionke, J. Schwermer, On the growth of the Betti numbers of arithmetic hyperbolic 3-manifolds. Preprint (2012)

    Google Scholar 

  92. N. Krämer, Beiträge zur Arithmetik imaginärquadratischer Zahlkörper. PhD thesis, Universität Bonn, 1985

    Google Scholar 

  93. T. Kubota, Modular forms for Picard groups, in Algebraische Zahlentheorie, Oberwolfach ed. by H. Hasse, P. Roquette (1964)

    Google Scholar 

  94. P.F. Kurčanov, The cohomology of discrete groups and Dirichlet series that are related to Jacquet-Langlands cusp forms. Izv. Akad. Nauk SSSR, Ser. Mat. 42, 588–601 (1978)

    MATH  MathSciNet  Google Scholar 

  95. M. Lingham, Modular forms and elliptic curves over imaginary quadratic fields. PhD thesis, University of Nottingham, 2005. http://etheses.nottingham.ac.uk/138/

  96. R. Livné, Cubic exponential sums and Galois representations, in Current Trends in Arithmetical Algebraic Geometry, Arcata, Calif., 1985. Contemp. Math., vol. 67 (Amer. Math. Soc., Providence, 1987), pp. 247–261

    Google Scholar 

  97. A.M. Macbeath, Groups of homeomorphisms of a simply connected space. Ann. Math. 79, 473–488 (1964)

    MATH  MathSciNet  Google Scholar 

  98. C. Maclachlan, A.W. Reid, The Arithmetic of Hyperbolic 3-Manifolds. Graduate Texts in Mathematics, vol. 219 (Springer, New York, 2003)

    MATH  Google Scholar 

  99. Y. Manin, Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR, Ser. Mat. 36, 19–66 (1972)

    MATH  MathSciNet  Google Scholar 

  100. S. Marshall, Bounds for the multiplicities of cohomological automorphic forms on \({\rm GL}_{2}\). Ann. Math. 175, 1629–1651 (2012)

    MATH  Google Scholar 

  101. S. Marshall, W. Müller, On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds. Duke Math. J. (to appear)

    Google Scholar 

  102. B. Mazur, Courbes elliptiques et symboles modulaires, in Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 414. Lecture Notes in Math., vol. 317 (1973), pp. 277–294

    Google Scholar 

  103. E.R. Mendoza, Cohomology of \({\rm PGL}_{2}\) over imaginary quadratic integers. PhD thesis, Universität, Bonn, 1979

    Google Scholar 

  104. L. Merel, Universal Fourier expansions of modular forms, in On Artin’s Conjecture for Odd 2-Dimensional Representations. Lecture Notes in Math., vol. 1585 (Springer, Berlin, 1994), pp. 59–94

    Google Scholar 

  105. J.-F. Mestre, Courbes hyperelliptiques à multiplications réelles. C. R. Acad. Sci. Paris Sér. I Math. 307, 721–724 (1988)

    MATH  MathSciNet  Google Scholar 

  106. J. Milne, Introduction to Shimura varieties. Online lecture notes

    Google Scholar 

  107. A. Mohamed, Some explicit aspects of modular forms over imaginary quadratic fields. PhD thesis, Universität Duisburg-Essen, 2011

    Google Scholar 

  108. A. Mohamed, Universal Hecke L-Series associated with cuspidal eigenforms over imaginary quadratic fields. These proceedings. doi:10.1007/978-3-319-03847-6_9

  109. A. Mohamed, Weight reduction for cohomological mod p modular forms over imaginary quadratic fields. Preprint, arXiv:1108.4619

  110. K. Namikawa, On mod p nonvanishing of special values of L-functions associated with cusp forms on \({\rm GL}_{2}\) over imaginary quadratic fields. Kyoto J. Math. 52, 117–140 (2012)

    MATH  MathSciNet  Google Scholar 

  111. A. Page, Computing fundamental domains for arithmetic Kleinian groups. Master’s thesis, University of Paris 7, 2010

    Google Scholar 

  112. A. Page, Computing arithmetic Kleinian groups. http://arxiv.org/abs/1206.0087

  113. R.G.E. Pinch, Elliptic curves with good reduction away from 2. Math. Proc. Camb. Philos. Soc. 96, 25–38 (1984)

    MATH  MathSciNet  Google Scholar 

  114. R.G.E. Pinch, Elliptic curves with good reduction away from 2. II. Math. Proc. Camb. Philos. Soc. 100, 435–457 (1986)

    MATH  MathSciNet  Google Scholar 

  115. R.G.E. Pinch, Elliptic curves with good reduction away from 3. Math. Proc. Camb. Philos. Soc. 101, 451–459 (1987)

    MATH  MathSciNet  Google Scholar 

  116. C. Priplata, Cohomology and homology of \({\rm PSL}_{2}\) over imaginary quadratic integers with general coefficients \(M_{n, m}(\mathcal{O}_{K})\) and Hecke eigenvalues. PhD thesis, Heinrich Heine University, 2000

    Google Scholar 

  117. H. Rademacher, Higher Mathematics from an Elementary Point of View (Birkhäuser, Boston, 1983). Edited by D. Goldfeld; With notes by G. Crane

    MATH  Google Scholar 

  118. A. Rahm, Homology and K-theory of the Bianchi groups. C. R. Math. Acad. Sci. Paris 349, 615–619 (2011)

    MATH  MathSciNet  Google Scholar 

  119. A. Rahm, Accessing the cohomology of discrete groups above their virtual cohomological dimension. arXiv:1112.4262

  120. A. Rahm, Higher torsion in the abelianization of the full Bianchi groups. LMS J. Comput. Math. 16, 344–365 (2013)

    MathSciNet  Google Scholar 

  121. A. Rahm, M. Fuchs, The integral homology of \({\rm PSL}_{2}\) of imaginary quadratic integers with nontrivial class group. J. Pure Appl. Algebra 215, 1443–1472 (2011)

    MATH  MathSciNet  Google Scholar 

  122. A. Rahm, M.H. Şengün, On level one cuspidal Bianchi modular forms. LMS J. Comput. Math. 16, 187–199 (2013)

    MathSciNet  Google Scholar 

  123. K. Ribet, Abelian varieties over \(\mathbb{Q}\) and modular forms, in Algebra and Topology, Taejon, 1992 (Korea Adv. Inst. Sci. Tech., Daejeon, 1992), pp. 53–79

    Google Scholar 

  124. R. Riley, Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra. Math. Comput. 40, 607–632 (1983)

    MATH  MathSciNet  Google Scholar 

  125. J. Rohlfs, Arithmetisch definierte Gruppen mit Galoisoperation. Invent. Math. 48, 185–205 (1978)

    MATH  MathSciNet  Google Scholar 

  126. J. Rohlfs, On the cuspidal cohomology of the Bianchi modular groups. Math. Z. 188, 253–269 (1985)

    MathSciNet  Google Scholar 

  127. G. Sansone, I sottogruppi del gruppo di Picard e due teoremi sui gruppi finiti analoghi al teorema del Dyck. Rend. Circ. Mat. Palermo 47, 273–312 (1923)

    MATH  Google Scholar 

  128. R. Scarth, Normal congruence subgroups of the Bianchi groups and related groups. PhD thesis, University of Glasgow, 2003

    Google Scholar 

  129. A. Scheutzow, Computing rational cohomology and Hecke eigenvalues for Bianchi groups. J. Number Theory 40, 317–328 (1992)

    MATH  MathSciNet  Google Scholar 

  130. J. Schneider, Diskrete Untergruppen von \({\rm SL}_{2}(\mathbb{C})\) und Ihre Operation auf dem drei-dimensionalen hyperbolischen Raum. Master’s thesis, University of Bonn, 1985

    Google Scholar 

  131. P. Scholze, On torsion in the cohomology of locally symmetric varieties. http://arxiv.org/abs/1306.2070

  132. M. Schütt, On the modularity of three Calabi-Yau threefolds with bad reduction at 11. Can. Math. Bull. 49, 296–312 (2006)

    MATH  Google Scholar 

  133. J. Schwermer, Special cycles and automorphic forms on arithmetically defined hyperbolic 3-manifolds. Asian J. Math. 8, 837–859 (2004)

    MATH  MathSciNet  Google Scholar 

  134. J. Schwermer, K. Vogtmann, The integral homology of \({\rm SL}_{2}\) and \({\rm PSL}_{2}\) of Euclidean imaginary quadratic integers. Comment. Math. Helv. 58, 573–598 (1983)

    MATH  MathSciNet  Google Scholar 

  135. D. Segal, Obituary: Fritz Grunewald, 1949–2010. Bull. Lond. Math. Soc. 44, 183–197 (2012)

    MATH  MathSciNet  Google Scholar 

  136. M.H. Şengün, Serre’s conjecture over imaginary quadratic fields. PhD thesis, University of Wisconsin, 2008

    Google Scholar 

  137. M.H. Şengün, On the integral cohomology of Bianchi groups. Exp. Math. 20, 487–505 (2011)

    MATH  MathSciNet  Google Scholar 

  138. M.H. Şengün, A numerical study of mod p Galois representations and the cohomology of Bianchi groups. http://homepages.warwick.ac.uk/~maslao/modularA5.pdf

  139. M.H. Şengün, S. Turkelli, Weight reduction for mod Bianchi modular forms. J. Number Theory 129, 2010–2019 (2009)

    MATH  MathSciNet  Google Scholar 

  140. M.H. Şengün, P. Tsaknias, Even Galois representations and homological torsion of Bianchi groups (in preparation)

    Google Scholar 

  141. M.H. Şengün, S. Turkelli, On the dimension of the cohomology of Bianchi groups. http://arxiv.org/abs/1204.0470

  142. C. Series, Non-Euclidean geometry, continued fractions, and ergodic theory. Math. Intell. 4, 24–31 (1982)

    MATH  MathSciNet  Google Scholar 

  143. J.-P. Serre, Le problème des groupes de congruence pour \({\rm SL}_{2}\). Ann. Math. 92, 489–527 (1970)

    MATH  Google Scholar 

  144. J.-P. Serre, Lecture Notes for the Course of 1984–85 (1984)

    Google Scholar 

  145. J.-P. Serre, Sur les représentations modulaires de degré 2 de \({\rm Gal}(\overline{\mathbb {Q}}/\mathbb{Q})\). Duke Math. J. 54, 179–230 (1987)

    MATH  MathSciNet  Google Scholar 

  146. B. Setzer, Elliptic curves over complex quadratic fields. Pac. J. Math. 74, 235–250 (1978)

    MATH  MathSciNet  Google Scholar 

  147. B. Setzer, Elliptic curves with good reduction everywhere over quadratic fields and having rational j-invariant. Ill. J. Math. 25, 233–245 (1981)

    MATH  MathSciNet  Google Scholar 

  148. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, vol. 11 (Princeton University Press, Princeton, 1994). Reprint of the 1971 original; Kano Memorial Lectures, No. 1

    MATH  Google Scholar 

  149. J. Smillie, K. Vogtmann, Automorphisms of \({\rm SL}_{2}\) of imaginary quadratic integers. Proc. Am. Math. Soc. 112, 691–699 (1991)

    MATH  MathSciNet  Google Scholar 

  150. W. Stein et al., Sage Mathematics Software (Version 4.6). The Sage Development Team, 2010. http://www.sagemath.org

  151. R.J. Stroeker, Reduction of elliptic curves over imaginary quadratic number fields. Pac. J. Math. 108, 451–463 (1983)

    MATH  MathSciNet  Google Scholar 

  152. R. Styer, Hecke theory over arbitrary number fields. J. Number Theory 33, 107–131 (1989)

    MATH  MathSciNet  Google Scholar 

  153. R.G. Swan, Generators and relations for certain special linear groups. Bull. Am. Math. Soc. 74, 576–581 (1968)

    MATH  MathSciNet  Google Scholar 

  154. R.G. Swan, Generators and relations for certain special linear groups. Adv. Math. 6(1971), 1–77 (1971)

    MATH  MathSciNet  Google Scholar 

  155. J. Tate, Letter to Serre, in Coll. Papers of J.-P. Serre, vol. IV (1971), pp. 27–29

    Google Scholar 

  156. R. Taylor, On congruences between modular forms. PhD thesis, Princeton, 1988

    Google Scholar 

  157. R. Taylor, -adic representations associated to modular forms over imaginary quadratic fields. II. Invent. Math. 116, 619–643 (1994)

    MATH  MathSciNet  Google Scholar 

  158. R. Taylor, Representations of Galois groups associated to modular forms, in Proceedings of the International Congress of Mathematicians, vol. 1, 2, Zürich, 1994 (Birkhäuser, Basel, 1995), pp. 435–442

    Google Scholar 

  159. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995)

    MATH  MathSciNet  Google Scholar 

  160. T. Thongjunthug, Heights on elliptic curves over number fields, period lattices and complex elliptic logarithms. PhD thesis, University of Warwick, 2011

    Google Scholar 

  161. R. Torrey, On Serre’s conjecture over imaginary quadratic fields. J. Number Theory 4, 637–656 (2012)

    MathSciNet  Google Scholar 

  162. E. Urban, Formes automorphes cuspidales pour \({\rm GL}_{2}\) sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences. Compos. Math. 99, 283–324 (1995)

    MATH  MathSciNet  Google Scholar 

  163. K. Vogtmann, Rational homology of Bianchi groups. Math. Ann. 272, 399–419 (1985)

    MATH  MathSciNet  Google Scholar 

  164. A. Weil, Zeta functions and Mellin transforms, in Algebraic Geometry (Oxford University Press, Bombay, 1968), pp. 409–426

    Google Scholar 

  165. S.H. Weintraub, Which groups have strange torsion? in Transformation Groups, Poznań, 1985. Lecture Notes in Math., vol. 1217 (Springer, Berlin, 1986), pp. 394–396

    Google Scholar 

  166. E. Whitley, Modular symbols and elliptic curves over imaginary quadratic fields. PhD thesis, University of Exeter, 1990. http://hdl.handle.net/10871/8427

  167. A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995)

    MATH  MathSciNet  Google Scholar 

  168. J. Wilson, Curves of genus 2 with real multiplication by a square root of 5. PhD thesis, University of Oxford, 1998

    Google Scholar 

  169. D. Yasaki, Hyperbolic tessellations associated to Bianchi groups, in Algorithmic Number Theory. Lecture Notes in Comput. Sci., vol. 6197 (Springer, Berlin, 2011), pp. 385–396

    Google Scholar 

  170. D. Zagier, Hecke operators and periods of modular forms, in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II, Ramat Aviv, 1989. Israel Math. Conf. Proc., vol. 3 (Weizmann, Jerusalem, 1990), pp. 321–336

    Google Scholar 

  171. S.H. Zarghani, Hecke operators for non-congruence subgroups of Bianchi groups. Proc. Am. Math. Soc. 139, 3853–3865 (2011)

    MATH  Google Scholar 

  172. Y. Zhao, Certain Dirichlet series attached to automorphic forms over imaginary quadratic fields. Duke Math. J. 72, 695–724 (1993)

    MATH  MathSciNet  Google Scholar 

  173. R. Zimmert, Zur \({\rm SL}_{2}\) der ganzen Zahlen eines imaginär-quadratischen Zahlkörpers. Invent. Math. 19, 73–81 (1973)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Lassina Dembélé for his help with the part about connections with elliptic curves. We also thank T. Berger, J.-P. Serre and A. Rahm for their helpful feedback. Figures 1 and 2 were reproduced from Maite Aranés’ thesis with her kind permission. Finally, we thank the referee for the constructive comments which gave the paper its more coherent final form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Haluk Şengün .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Şengün, M.H. (2014). Arithmetic Aspects of Bianchi Groups. In: Böckle, G., Wiese, G. (eds) Computations with Modular Forms. Contributions in Mathematical and Computational Sciences, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-03847-6_11

Download citation

Publish with us

Policies and ethics