Skip to main content

Finite-Time Blowup and Existence of Global Positive Solutions of a Semi-linear Stochastic Partial Differential Equation with Fractional Noise

  • Chapter
  • First Online:
Modern Stochastics and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 90))

Abstract

We consider stochastic equations of the prototype

$$\displaystyle{\mathrm{d}u(t,x) = \left (\Delta u(t,x) +\gamma u(t,x) + u{(t,x)}^{1+\beta }\right )\mathrm{d}t +\kappa u(t,x)\,\mathrm{d}B_{ t}^{H}}$$

on a smooth domain \(D \subset {\mathbb{R}}^{d}\), with Dirichlet boundary condition, where β > 0, γ and κ are constants and \(\{B_{t}^{H}\), t ≥ 0} is a real-valued fractional Brownian motion with Hurst index H > 1∕2. By means of the associated random partial differential equation, obtained by the transformation \(v(t,x) = u(t,x)\exp \{\kappa B_{t}^{H}\}\), lower and upper bounds for the blowup time of u are given. Sufficient conditions for blowup in finite time and for the existence of a global solution are deduced in terms of the parameters of the equation. For the case H = 1∕2 (i.e. for Brownian motion), estimates for the probability of blowup in finite time are given in terms of the laws of exponential functionals of Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arcones, M.A.: On the law of the iterated logarithm for Gaussian processes. J. Theor. Probab. 8, 877–903 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandle, C., Dozzi, M., Schott, R.: Blow up behaviour of a stochastic partial differential equation of reaction-diffusion type. In: Stochastic Analysis: Random Fields and Measure-Valued Processes. Israel Mathematical Conference Proceedings, vol. 10, pp. 27–33. Bar-Ilan University, Ramat Gan (1996)

    Google Scholar 

  3. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  4. Dozzi, M., López-Mimbela, J.A.: Finite-time blowup and existence of global positive solutions of a semi-linear SPDE. Stoch. Process. Appl. 120(6), 767–776 (2010)

    Article  MATH  Google Scholar 

  5. Dufresne, D.: The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuarial J. 9, 39–79 (1990)

    Article  MathSciNet  Google Scholar 

  6. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc., Englewood Cliffs (1964)

    MATH  Google Scholar 

  7. Fujita, H.: On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations. In: Nonlinear Functional Analysis. American Mathematical Society, Providence, RI (1970). Proceedings of Symposia in Pure Mathematics, vol. 18, Part 1, pp. 105–113, Chicago (1968)

    Google Scholar 

  8. Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202, 277–305 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Matsumoto, H., Yor, M.: Exponential functionals of Brownian motion. I. Probability laws at fixed time. Probab. Surv. 2, 312–347 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Mishura, Y.: Stochastic calculus for fractional Brownian motion and related processes. Springer Lecture Notes in Mathematics, vol. 1929. Springer, Berlin (2008)

    Google Scholar 

  11. Nualart, D., Vuillermot, P.: Variational solutions for partial differential equations driven by a fractional noise. J. Funct. Anal. 232, 390–454 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ohashi, A.M.F.: Stochastic evolution equations driven by a fractional white noise. Stoch. Anal. Appl. 24, 555–578 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ouhabaz, E.M., Wang, F.-Y.: Sharp estimates for intrinsic ultracontractivity on \({C}^{1,\alpha }\)-domains. Manuscripta Math. 122(2), 229–244 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Google Scholar 

  15. Pintoux, C., Privault, N.: A direct solution to the Fokker-Planck equation for exponential Brownian functionals. Anal. Appl. (Singapore) 8, 287–304 (2010)

    Google Scholar 

  16. Salminen, P., Yor, M.: Properties of perpetual integral functionals of Brownian motion with drift. Ann. Inst. H. Poincaré Probab. Stat. 41(3), 335–347 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sanz-Solé, M., Vuillermot, P.: Mild solutions for a class of fractional SPDE’s and their sample paths. J. Evol. Equat. 9, 235–265 (2009)

    Article  MATH  Google Scholar 

  18. Yor, M.: On some exponential functionals of Brownian motion. Adv. Appl. Probab. 24, 509–531 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zähle, M.: Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Relat. Fields 111, 333–374 (2001)

    Google Scholar 

  20. Zähle, M.: Integration with respect to fractal functions and stochastic calculus II. Math. Nachr. 225, 145–183 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the CNRS-CONACyT research grant “Blow-up of parabolic stochastic partial differential equations”. M. Dozzi acknowledges the European Commission for partial support by the grant PIRSES 230804 “Multifractionality”; he also acknowledges the hospitality of CIMAT, Guanajuato, where part of this work was done. E.T. Kolkovska and J.A. López-Mimbela acknowledge the hospitality of Institut Elie Cartan, Université de Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dozzi, M., Kolkovska, E.T., López-Mimbela, J.A. (2014). Finite-Time Blowup and Existence of Global Positive Solutions of a Semi-linear Stochastic Partial Differential Equation with Fractional Noise. In: Korolyuk, V., Limnios, N., Mishura, Y., Sakhno, L., Shevchenko, G. (eds) Modern Stochastics and Applications. Springer Optimization and Its Applications, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-03512-3_6

Download citation

Publish with us

Policies and ethics