Skip to main content

Recent Development of Phosphorus Flame Retardants in Thermoplastic Blends and Nanocomposites

  • Chapter
  • First Online:
Flame Retardants

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

With the increasing use of thermoplastics and thermosetting polymers on a large scale for applications in buildings, transportation, electrical engineering and electronics, as well as the high fires safety standards which polymer resins should meet, a large variety of flame retardant products have been developed over the past 40 years. Restrictions on the use of polybrominated diphenyl ethers (PBDE) have resulted in the increased use of alternate flame retardant chemicals, such as phosphorus flame retardants (PFR). PFR contains a wide group of different organic and inorganic compounds, with a great variation in their physico-chemical properties. They are non-flammable, non-explosive and odorless substances listed as High Production Volume Chemicals (HPV). Non-halogen, phosphorus-containing flame retardants such as ammonium polyphosphate and red phosphorus are shown to be very effective in thermoset resins. Phosphate esters significantly lower the heat distortion temperature and impact properties of PC/ABS blends while increasing melt flow in so called antiplasticization process. Resorcinol diphosphate (RDP) was the first material developed for PC/ABS and it is a liquid additive with 9 % P content and good efficacy as a flame retardant. Bisphenol A bisphosphate (BADP) is another liquid with properties similar to RDP. Polymer–clay nanocomposites have attracted a great deal of interest due to their improved mechanical, thermal and biodegradability properties. Nano “sponge” structures produced from cyclodextrins have been tested with flame retardants ammonium polyphosphate (APP) and triethylphopshate. The PFRs can be enclosed in the nano sugar sponge structure, improving mixing with plastic polymers and enabling high flame retardant loadings without deteriorating polymer mechanical performance. Fire performance tests using the nano sugar sponge—PFR combination (heat release, heat of combustion, mass loss, smoke) showed that the combination was effective for environmentally friendly structures polypropylene, linear low density polyethylene and polyamide 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. SRI Consulting.: Consumption of flame retardants. http://www.cefic-efra.com 7 (2004). Accessed 27 May 2005 (La Rosa et al. 1999, Pecht et al. 1994)

  2. La Rosa, D., Recca, A., Carter, J.T., Mc Grail, P.T.: An oxygen index evaluation of flammability on modified epoxy/polyester systems. Polymer 40(14), 4093–4098 (1999)

    Article  Google Scholar 

  3. Pecht, M., Nguyen, L.T., Hakim, E.B. (eds.): Plastic Encapsulated Microelectronics. Wiley, New York (1994)

    Google Scholar 

  4. de Wit, C.A.: An overview of brominated flame retardants in the environment. Chemosphere 46(5), 583–624 (2002)

    Article  Google Scholar 

  5. Bromine Science and Environmental Forum.: An introduction to brominated flame retardants, October 2000. http://www.ebfrip.org/download/weeeqa.pdf (2000)

  6. European Commission.: Directive 2002/95/EC of the European Parliament of 27.01.2003 on the restriction of certain hazardous substances in electric and electronic equipment (2003)

    Google Scholar 

  7. European Flame Retardants Association, EFRA.: Market Statistics. http://www.flameretardants.eu/DocShareNoFrame/docs/1/HGJJCNFBPCEOKPEPPIPEICDF53V443-HA4YW3PDB348BT/EFRA/docs/DLS/EFRA_web_11-2007_Market_statistics-1.pdf (2007)

  8. International Uniform Chemical Information Database.: IUCLID, 2nd edn. [CD-ROM]; CB, European Chemicals Bureau, Ispra, Italy (2000)

    Google Scholar 

  9. European Commission.: EU risk assessment report, tris(2-chloro-1-methylethyl) phosphate, TCPP (2008)

    Google Scholar 

  10. European Commission.: EU risk assessment report, tris(2-chloro-1-(chloromethyl)ethyl) phosphate, TDCP (2008)

    Google Scholar 

  11. European Commission.: EU risk assessment report, tris(2-chloroethyl) phosphate, TCEP (2009)

    Google Scholar 

  12. Latendresse, J.R., Brooks, C.L., Capen, C.C.: Pathologic effects of butylated triphenyl phosphate-based hydraulic fluid and tricresyl phosphate on the adrenal gland, ovary, and testis in the Fischer-344 rat. Toxicol. Pathol. 22, 341–354 (1994)

    Article  Google Scholar 

  13. Steukers, V., Kroon, S., Drohmann, D.: Flame retardants: European Union risk assessments update. Plast. Addit. Compd. 6, 26–29 (2004)

    Google Scholar 

  14. Rodriguez, I., Calvo, F., Quintana, J.B., Rubi, E., Rodil, R., Cela, R.: Suitability of solid-phase microextraction for the determination of organophosphate flame retardants and plasticizers in water samples. J. Chromatogr. A 1108, 158–165 (2006)

    Article  Google Scholar 

  15. Hendrickx, A.G., Peterson, P.E., Tyl, R.W., Fisher, L.C., Fosnight, L.J., Kubena, M.F., Vrbanic, M.A., Katz, G.V.: Assessment of the developmental toxicity of 2-ethylhexanoic acid in rats and rabbits. Toxicol. Sci. 20, 199–209 (1993)

    Article  Google Scholar 

  16. Sakon (to Rinkagaku Kogyo).: Red phosphorus flame retardant and nonflammable resinous composition containing the same. US Patent 4,879,067, 7 Nov 1989

    Google Scholar 

  17. Peters, E.N.: Flame-retardant thermoplastics I: polyethylene-red phosphorus. J. Appl. Polym. Sci. 24(6), 1457–1464 (1979)

    Article  Google Scholar 

  18. http://www.chempoint.com

  19. http://cellulartechnology.us/flame-retardant-plasticizers-pu-vinyl/

  20. Wang, Z., Wu, G., Hu, Y., Ding, Y., Hu, K., Fan, W.: Thermal degradation of magnesium hydroxide and red phosphorus flame retarded polyethylene composites. Polym. Degrad. Stab. 77, 427–434 (2002)

    Article  Google Scholar 

  21. Pecht, M., Deng, Y.: Electronic device encapsulation using red phosphorus flame retardants. Microelectron. Reliab. 46, 53–62 (2006)

    Article  Google Scholar 

  22. Muir, D.C.G.: Phosphate esters, In: Huntzinger, O. (ed.) Handbook of Environmental Chemistry. Springer, Berlin (1984)

    Google Scholar 

  23. World Health Organization, WHO.: Tributyl Phosphate. Environmental Health Criteria, vol. 112, Geneva, Switzerland (1991)

    Google Scholar 

  24. World Health Organization, WHO.: Flame Retardants: Tris(2-butoxyethyl) Phosphate, Tris(2-ethylhexyl) Phosphate and Tetrakis(hydroxymethyl) Phosphonium Salts. Environmental Health Criteria, vol. 218, Geneva, Switzerland (2000)

    Google Scholar 

  25. International Programme on Chemical Safety, IPCS.: Flame Retardants: Tris(2-Butoxyethyl) Phosphate, Tris (2-Ethylhexyl) Phosphate and Tetrakis(Hydroxymethyl) Phosphonium Salts. Environmental Health Criteria, vol. 218. World Health Organization, Geneva, Switzerland (2000)

    Google Scholar 

  26. Anderson, C., Wischer, D., Schmieder, A., Spiteller, M.: Fate of triphenyl phosphate in soil. Chemosphere 27, 869–879 (1993)

    Article  Google Scholar 

  27. Kera, Y., Takahashi, S., Abe, K.: Biodegradation of persistent chlorinated organophosphorus flame retardants by microorganisms newly isolated from soil—a short review. Trans GIGAKU 1(01011), 1–4 (2012)

    Google Scholar 

  28. Takahashi, S., Abe, K., Kera, Y.: Microbial degradation of persistent organophosphorus flame retardants. In: Petre, M. (ed.) Environmental Biotechnology—New Approaches and Prospective Applications. InTech. ISBN:978-953-51-0972-3, doi:10.5772/53749. Accessed http://www.intechopen.com/books/environmental-biotechnology-new-approaches-and-prospective-applications/microbial-degradation-of-persistent-organophosphorus-flame-retardants (2013)

  29. Kolvenbach, B., Schlaich, N., Raoui, Z., Prell, J., Zühlke, S., Schäffer, A., Guengerich, F.P., Corvini, P.F.X.: Degradation pathway of bisphenol a: does ipso substitution apply to phenols containing a quaternary α-carbon structure in the para position? Appl. Environ. Microbiol. 73(15), 4776–4784 (2007)

    Article  Google Scholar 

  30. Andresen, J., Grundmann, A., Bester, K.: Organophosphorus flame retardants and plasticisers in surface waters. Sci. Total Environ. 332, 155–166 (2004)

    Article  Google Scholar 

  31. Reemtsma, T., Quintana, J.B., Rodil, R., Garcıa-Lopez, M., Rodrıguez, I.: Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. Trends Anal. Chem. 27, 727–737 (2008)

    Article  Google Scholar 

  32. http://www.pinfa.org/non-halogenated-pin-frs/phosphorus-based-flame-retardants.html

  33. Agency for Toxic Substances and Disease Registry, ATSDR.: Toxicological Profile for Hydraulic Fluids. U.S. Department of Health and Human Services, Atlanta, GA (1997)

    Google Scholar 

  34. van der Veen, I., de Boer, J.: Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88, 1119–1153 (2012)

    Article  Google Scholar 

  35. Pakalin, S., Cole, T., Steinkellner, J., Nicolas, R., Tissier, C., Munn, S., Eisenreich, S.: Review on Production Processes of Decabromodiphenyl Ether (decaBDE) Used in Polymeric Applications in Electrical and Electronic Equipment, and Assessment of the Availability of Potential Alternatives to decaBDE, European Report EUR 22693 EN. Brussel, Belgium (2007)

    Google Scholar 

  36. Leisewitz, A., Kruse, H., Schramm, E.: Substituting Environmentally Relevant Flame Retardants: Assessment Fundamentals. Results and Summary Overview. Environmental Research Plan of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. Research, Report 297 44 542 (2000)

    Google Scholar 

  37. Pawlowski, K.H., Schartel, B.: Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile–butadiene–styrene blends. Polym. Int. 56, 1404–1414 (2007)

    Article  Google Scholar 

  38. Chemspider.: http://www.chemspider.com/Search.aspx (2011). Accessed 31 Oct 2011

  39. U.S. EPA.: EPI Suite. [computer program]. Version 3.11.: U.S. Environmental Protection Agency (EPA) Office of Pollution Prevention Toxics and Syracuse Research Company (SRC), Washington, D.C. (2003)

    Google Scholar 

  40. Verbruggen, E.M.J., Rila, J.P., Traas, T.P., Posthuma-Doodeman, C.J.A.M., Posthumus, R.: Environmental Risk Limits for Several Phosphate Esters, with Possible Application as Flame Retardant. National Institute for Public Health and the Environment, Bilthoven (2005)

    Google Scholar 

  41. World Health Organization (WHO).: EHC 110: Tricresyl Phosphate, Geneva, Switzerland (1990)

    Google Scholar 

  42. Tremain, S.P.: TCPP Determination of Vapour Pressure. SPL Project Number 1613/001 (2002)

    Google Scholar 

  43. Cuthbert, J.E., Mullee, D.M.: TCPP: Determination of General Physicochemical Properties. Report 1613/002, Safe Pharm Laboratories, PO Box 45, Derby, UK (2002)

    Google Scholar 

  44. European Commission.: EU Risk Assessment Report, 2,2-Bis(Chloromethyl) Trimethylene Bis[bis(2-Chloroethyl) Phosphate] (V6) CAS No.: 38051-10-4. EINECS No.: 253-760-2 (2008)

    Google Scholar 

  45. ASCC (Australian Safety and Compensation Council).: Melapur 200 and Polymer in Exolit OP 1312. National Industrial Chemicals Notification and Assessment Scheme. Full Public Report (2006)

    Google Scholar 

  46. Phosphorus, Inorganic and Nitrogen Flame retardant Association (PINFA).: Human Health and Environmental Fact Sheet, MELAPUR 200 70. Accessed 20 Sept 2011

    Google Scholar 

  47. Organisation for Economic Co-operation and Development, OECD.: Emission Scenario Document on Plastics Additives (OECD Series on Emission Scenario Documents No 3, ENV/JM/MONO/8) (2004)

    Google Scholar 

  48. Fries, E., Püttmann, W.: Occurrence of organophosphate esters in surface water and ground water in Germany. J. Environ. Monit. 3, 621–626 (2001)

    Article  Google Scholar 

  49. Fries, E., Püttmann, W.: Monitoring of the three organophosphate esters TBP, TCEP and TBEP in river water and ground water (Oder, Germany). J. Environ. Monit. 5, 346–352 (2003)

    Article  Google Scholar 

  50. Regnery, J., Püttmann, W.: Organophosphorus flame retardants and plasticizers in rain and snow from middle Germany. Clean 37, 334–342 (2009)

    Google Scholar 

  51. Quintana, J.B., Rodil, R., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D.: Optimisation of a selective method for the determination of organophosphorous triesters in outdoor particulate samples by pressurised liquid extraction and large-volume injection gas chromatography-positive chemical ionisation-tandem mass spectrometry. Anal. Bioanal. Chem. 388, 1283–1293 (2007)

    Article  Google Scholar 

  52. Lach, G., Steffen, D.: Preliminary investigations of nitro-/polymusks and the flame retardants TCEP and TCPP in sediments. Surface waters 3:97. Niedersaechsisches Landesamt fuer Okologie, Hildesheim, Germany (in German) (1997)

    Google Scholar 

  53. Mihajlovic, I., Fries, E.: Atmospheric deposition of chlorinated organophosphate flame retardants (OFR) onto soils. Atmos. Environ. 56, 177–183 (2012)

    Article  Google Scholar 

  54. Meyer, J., Bester, K.: Organophosphate flame retardants and plasticisers in wastewater treatment plants. J. Environ. Monit. 6, 599–605 (2004)

    Article  Google Scholar 

  55. Carlsson, H., Nilsson, U., Becker, G., Ostman, C.: Organophosphate ester flame retardants and plasticizers in the indoor environment: analytical methodology and occurrence. Environ. Sci. Technol. 31, 2931–2936 (1997)

    Article  Google Scholar 

  56. Tollbäck, J., Isetun, S., Colmsjö, A., Nilsson, U.: Dynamic non-equilibrium SPME combined with GC, PICI, and ion trap MS for determination of organophosphate esters in air. Anal. Bioanal. Chem. 396, 839–844 (2010)

    Article  Google Scholar 

  57. Staaf, T., Ostman, C.: Indoor air sampling of organophosphate triesters using solid phase extraction (SPE) adsorbents. J. Environ. Monit. 7, 344–348 (2005)

    Article  Google Scholar 

  58. Marklund, A., Andersson, B., Haglund, P.: Organophosporus flame retardants and- plasticizers in air from various indoor environments. J. Environ. Monit. 7, 814–819 (2005)

    Article  Google Scholar 

  59. Bjorklund, J., Isetun, S., Nilsson, U.: Selective determination of organophosphate flame retardants and plasticizers in indoor air by gas chromatography, positive-ion chemical ionization and collision-induces dissociation mass spectrometry. Rapid Commun. Mass Spectr. 18, 3079–3083 (2004)

    Article  Google Scholar 

  60. Tollback, J., Tamburro, D., Crescenzi, C., Carlsson, H.: Air sampling with Empore solid phase extraction membranes and online single-channel desorption/liquid chromatography/mass spectrometry analysis: determination of volatile and semi-volatile organophosphate esters. J. Chromatogr. A 1129, 1–8 (2006)

    Article  Google Scholar 

  61. Hartmann, P.C., Burgi, D., Giger, W.: Organophosphate flame retardants and plasticizers in indoor air. Chemosphere 57, 781–787 (2004)

    Article  Google Scholar 

  62. Möller, A., Xie, Z., Caba, A., Sturm, R., Ebinghaus, R.: Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea. Environ. Pollut. 159, 3660–3665 (2011)

    Article  Google Scholar 

  63. Saito, I., Onuki, A., Seto, H.: Indoor organophosphate and polybrominated flame retardants in Tokyo. Indoor Air 17, 28–36 (2007)

    Article  Google Scholar 

  64. Green, N., Schlabach, M., Bakke, T., Brevik, E.M., Dye, C., Herzke, S., Huber, S., Plosz, B., Remberger, M., Schøyen, M., Uggerud, H.T., Vogelsang, C.: Screening of Selected Metals and New Organic Contaminants 2007 (Norwegian Pollution Control Authority SPFO-Report: 1014, TA-2367.ISBN 978-82-577-5304-7) (2008)

    Google Scholar 

  65. Regnery, J., Püttmann, W.: Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff. Chemosphere 78, 958–964 (2010)

    Article  Google Scholar 

  66. Bacaloni, A., Cucci, F., Guarino, C., Nazzari, M., Samperi, R., Lagana, A.: Occurrence of organophosphorus flame retardant and plasticizers in three volcanic lakes of central Italy. Environ. Sci. Technol. 42, 1898–1903 (2008)

    Article  Google Scholar 

  67. Marklund, A., Andersson, B., Haglund, P.: Traffic as a source of organophosphorus flame retardants and plasticizer in snow. Environ. Sci. Technol. 39(10), 3555–3562 (2005)

    Article  Google Scholar 

  68. Martínez-Carballo, E., González-Barreiro, C., Sitka, A., Scharf, S., Gans, O.: Determination of selected organophosphate esters in the aquatic environment of Austria. Sci. Total Environ. 388, 290–299 (2007)

    Article  Google Scholar 

  69. Marklund, A., Andersson, B., Haglund, P.: Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants. Environ. Sci. Technol. 39(19), 7423–7429 (2005)

    Article  Google Scholar 

  70. Kawagoshi, Y., Fukunaga, I., Itoh, H.: Distribution of organophosphoric acid triesters between water and sediment at a sea-based solid waste disposal site. J Mater Cycles Waste Manag 1, 53–61 (1999)

    Google Scholar 

  71. David, M.D., Seiber, J.N.: Analysis of organophosphate hydraulic fluids in U.S. Air Force base soils. Arch. Environ. Contam. Toxicol. 36, 235–241 (1999)

    Article  Google Scholar 

  72. Fries, E., Mihajlovic, I.: Pollution of soils with organophosphorus flame retardants and plasticizers. J. Environ. Monit. 13(10), 2692–2694 (2011)

    Article  Google Scholar 

  73. Evenset, A., Leknes, H., Christensen, G.N., Warner, N., Remberger, M., Gabrielsen, G.W.: Screening of New Contaminants in Samples from Norwegian Arctic. NIVA Report 4351-1, SPFO-Report 1049/2009. TA-2510/2009. ISBN:978-82-449-0065-2 (2009)

    Google Scholar 

  74. Leonards, P., Steindal, E.H., van der Veen, I., Berg, V., Bustnes, J.O., van Leeuwen, S.: Screening of organophosphor flame retardants 2010. SPFO-Report 1091/2011. TA-2786/2011 (2011)

    Google Scholar 

  75. Dany, F.J., et. al. (to Hoechst Aktiengesellschaft and Ruhrchemie Aktiengesellschaft).: Flameproof moulding compositions based on polyolefins. US Patent 3,931,081, 6 Jan 1976

    Google Scholar 

  76. Albanesi, G. (to Saffa S.p.A.).: Process for stabilizing by encapsulation red phosphorus to be used as flame retardant of polymeric materials and product so obtained. US Patent 4,440,880, 3 April 1984

    Google Scholar 

  77. Hira, Y. et. al. (to Hitachi).: Flame-retardant epoxy resin compositions. US Patent 4,145,369, 20 March 1979

    Google Scholar 

  78. Hirobe, K. (to Kanegafuchi Kagaku Kogyo Kabushiki Kaisha).: Flame resistant resin composition. US Patent 4,493,913, 15 Jan 1985

    Google Scholar 

  79. Dany, F.J. et. al. (to Hoechst Aktiengesellschaft): Stabilized red phosphorus. US Patent 4,210,630, 1 July 1980

    Google Scholar 

  80. Lenoir D, Becker L, Thumm W, Kettrup A, Hauk A, Sklorz M, Bergmann G, Hutzinger O.: Evaluation of ecotoxicological properties from incineration of new duroplastic materials without halogen as flame retardant. Conference on Flame Retardancy of Polymeric Materials, Stamford, CT (1994)

    Google Scholar 

  81. Hu, Y., Song, L., Xu, J., Yang, L., Chen, Z.Y., Fan, W.C.: Synthesis of polyurethane/clay intercalated nanocomposites. Colloid Polym. Sci. 279, 819–822 (2001)

    Article  Google Scholar 

  82. Wang, S.F., Hu, Y., Song, L., Wang, Z.Z., Chen, Z.Y., Fan, W.C.: Preparation and thermal properties of ABS/montmorillonite nanocomposite. Polym. Degrad. Stab. 77, 423–426 (2002)

    Article  Google Scholar 

  83. Lei, S., Yuan, H., Lin, Z.H., Xuan, S.Y., Wang, S.F., Chen, Z.Y., Fan, W.C.: Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocomposite. Polym. Degrad. Stab. 86(3), 535–540 (2004)

    Article  Google Scholar 

  84. Hu, Y., Wang, S.F., Ling, Z.H., Zhuang, Y.L., Chen, Z.Y., Fan, W.C.: Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocomposite. Macromol. Mater. Eng. 288(3), 272–276 (2003)

    Article  Google Scholar 

  85. Kim, J., Lee, K., Lee, K., Bae, J., Yang, J., Hong, S.: Studies on the thermal stabilization enhancement of ABS: synergistic effect of triphenyl phosphate nanocomposite, epoxy resin, and silane coupling agent mixtures. Polym. Degrad. Stab. 79(2), 201–207 (2003)

    Article  Google Scholar 

  86. Hu, Y., Song, L.: Nanocomposites with halogen and nonintumescentphosphorus flame retardant additives. In: Morgan, A.B., Wilkie, C.A. (eds.) Flame Retardant Polymer Nanocomposites. Wiley, New York, pp. 191–233 (2007)

    Google Scholar 

  87. Gilman, J.W., Kashiwagi, T., Nyden, M., Brown, J.E.T., Jackson, C.L., Lomakin, S., Giannelis, E.P., Manias, E.: Flammability studies of polymer layered silicate nanocomposites: polyolefin, epoxy and vinyl ester resins, Chapter 14. In: Al-Malaika, S., Golovoy, A., Wilkie, C.A. (eds.) Chemistry and Technology of Polymer Additives. Blackwell Science, Oxford (1999)

    Google Scholar 

  88. Lomakin, S.M., Usachev, S.V., Koverzanova, E.V., Ruban, L.V., Kalinina, I.G., Zaikov, G.E.: An investigation of the thermal degradation of polymer flame retardant additives: triphenylphosphate and modified intercalated triphenyl phosphate. In: 10th Annual Conference, Recent Advances in the Fire Retardancy of Polymeric Materials, Business Communications Co., Norwalk, C, 73 (1999)

    Google Scholar 

  89. Ruban, L., Lomakin, S., Zaikov, G.: Polymer Nanocomposites with participation of layer aluminium silicates. In: Zaikov, G.E., Khalturinski, N.A. (eds.) Low Flammability Polymeric Materials. Nova Science Publishers, New York (1999)

    Google Scholar 

  90. Alongi, J., et al.: Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydr Polym (Elsevier) 88, 1387–1394 (2012)

    Article  Google Scholar 

  91. Sanchez, C., Ericsson, M., Carlsson, H., Colmsjo, A.: Determination of organophosphate esters in air samples by dynamic sonication-assisted solvent extraction coupled on-line with large-volume injection gas chromatography utilizing a programmed-temperature vaporizer. J. Chromatogr. A 993, 103–110 (2003)

    Article  Google Scholar 

  92. Ericsson, M., Colmsjo, A.: Dynamic microwave-assisted extraction coupled on-line with solid-phase extraction and large-volume injection gas chromatography: determination of organophosphate esters in air samples. Anal. Chem. 75(7), 1713–1719 (2003)

    Article  Google Scholar 

  93. Andresen, J., Bester, K.: Elimination of organophosphate ester flame retardants and plasticizers in drinking water purification. Water Res. 40, 621–629 (2006)

    Article  Google Scholar 

  94. Regnery, J., Püttmann, W., Merz, C., Berthold, G.: Occurrence and distribution of organophosphorus flame retardants and plasticizers in anthropogenically affected groundwater. Environ. Monit. 13, 347–354 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The study of PFR was implemented during my research time as German Environmental Foundation (DBU) scholarship holder at the Institute of Environmental System Research, University of Osnabrück, Germany and as a scientific research assistant at the Faculty of Technical Sciences, University of Novi Sad, Serbia. I would like to thank to Dr. Elke Fries from BRGM, Water, Environment and Eco-technologies Division, Orleans, France and Prof. Emeritus Mirjana Vojinović Miloradov from the University of Novi Sad, Serbia, for their valuable comments and constructive discussions during my research study on PFRs. The study was financially supported by the German Environmental Foundation (Deutsche Bundesstiftung Umwelt—DBU) and Ministry of Education and Science, Republic of Serbia within the Project III46009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Mihajlović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mihajlović, I. (2015). Recent Development of Phosphorus Flame Retardants in Thermoplastic Blends and Nanocomposites. In: Visakh, P., Arao, Y. (eds) Flame Retardants. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03467-6_4

Download citation

Publish with us

Policies and ethics