Skip to main content

Recent Developments in Different Techniques Used for the Flame Retardancy

  • Chapter
  • First Online:
Flame Retardants

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

To improve the flame retardancy of polymer blends, composites and nanocomposites for extending their application, recent developments in different techniques used for the flame retardancy are reviewed in this chapter. We introduce the fundamentals of experimental methods such as cone calorimetry and UL 94 used to describe fire behavior. Also the pyrolysis process of condensed phrase is presented to prevent further pyrolysis of polymeric materials. Additionally, the combustion process of polymeric materials is described for selecting feasible flame retardants to reduce the amount of flammable volatiles emitted during combustion. At the same time, the smoke formation is discussed during fire for reduce smoke to protect environments and human’s health. Finally, the future trends of different techniques utilized for the flame retardancy are introduced such as nanotechnology, catalysis reaction, vapor phase flame retardant and flame retardant synergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, Z., Cai, G., Mai, Y., Dasaria, A.: Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013)

    Article  Google Scholar 

  2. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J., Dubois, P.: New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R 63, 100–125 (2009)

    Article  Google Scholar 

  3. Kiliaris, P., Papaspyrides, C.D.: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog. Polym. Sci. 35, 902–958 (2010)

    Article  Google Scholar 

  4. Dasari, A., Yu, Z., Cai, G., Mai, Y.: Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013)

    Article  Google Scholar 

  5. Bourbigot, S., Duquesne, S.: Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 17, 2283–2300 (2007)

    Article  Google Scholar 

  6. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  Google Scholar 

  7. Utracki, L.A., Sepehr, M., Boccaleri, E.: Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polym. Adv. Technol. 18, 1–37 (2007)

    Article  Google Scholar 

  8. Vaia, R.A., Maguire, J.F.: Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem. Mater. 19, 2736–2751 (2007)

    Article  Google Scholar 

  9. Gilman, J.W., Harris, R.H., Shields, J.R., Kashiwagi, T., Morgan, A.B.: A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char. Polym. Adv. Technol. 17, 263–271 (2006)

    Article  Google Scholar 

  10. Bartholmai, M., Schartel, B.: Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym. Adv. Technol. 15, 355–364 (2004)

    Article  Google Scholar 

  11. Morgan, A.B., Bundy, M.: Cone calorimeter analysis of UL-94 V-rated plastics. Fire Mater. 31, 257–283 (2007)

    Article  Google Scholar 

  12. Bourbigot, S., Duquesne, S.: Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 17, 2283–2300 (2007)

    Article  Google Scholar 

  13. Tata, J., Alongi, J., Carosio, F., et al.: Optimization of the procedure to burn textile fabrics by cone calorimeter: part I. Combustion behavior of polyester. Fire Mater 35(6), 397–409 (2011)

    Article  Google Scholar 

  14. Xu, Q., Majlingova, A., Zachar, M.: Correlation analysis of cone calorimetry test data assessment of the procedure with tests of different polymers. J. Therm. Anal. Calorim. 110(1), 65–70 (2012)

    Article  Google Scholar 

  15. Mariappan, T., Wilkie, C.A.: Cone calorimetric analysis of flame-retarded polyurea for coating applications. J. Fire Sci. 31(4), 330–338 (2013)

    Article  Google Scholar 

  16. Dietenberger, M.: Pyrolysis kinetics and combustion of thin wood by an advanced cone calorimetry test method. J. Therm. Anal. Calorim. 109(3), 1215–1228 (2012)

    Article  Google Scholar 

  17. Wang, Y., Jow, J., Su, K., et al.: Development of the unsteady upward fire model to simulate polymer burning under UL 94 vertical test conditions. Fire Saf. J. 54, 1–13 (2012)

    Article  Google Scholar 

  18. Wang, Y., Zhang, J.: Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions. J. Hazard. Mater. 246, 103–109 (2013)

    Google Scholar 

  19. Sullalti, S., Colonna, M., Berti, C.: Effect of phosphorus based flame retardants on UL 94 and comparative tracking index properties of poly (butylene terephthalate). Polym. Degrad. Stab. 97(4), 566–572 (2012)

    Article  Google Scholar 

  20. Lin, C.H., Chen, J.C., Huang, C.M., et al.: Side-chain phenol-functionalized poly (ether sulfone) and its contribution to high-performance and flexible epoxy thermosets. Polymer 54(26), 6936–6941 (2013)

    Article  Google Scholar 

  21. Morgan, A.B., Bundy, M.: Cone calorimeter analysis of UL-94 V-rated plastics. Fire Mater. 31, 257–283 (2007)

    Article  Google Scholar 

  22. Weil, E.D., Patel, N.G., Said, M.M., Hirschler, M.M., Shakir, S.: Oxygen index: correlations to other fire tests. Fire Mater. 16, 159–167 (1992)

    Article  Google Scholar 

  23. Xu, T., Wang, H., Huang, X., Li, G.: Inhibitory action of flame retardant on the dynamic evolution of asphalt pyrolysis volatiles. Fuel 105, 757–763 (2013)

    Article  Google Scholar 

  24. Popov, K.V., Knyazev, V.D.: Molecular dynamics simulation of C-C bond scission in polyethylene and linear alkanes: effects of the condensed phase. J. Phys. Chem. A 118(12), 2187–2195 (2014)

    Article  Google Scholar 

  25. Dasari, A., Yu, Z.Z., Cai, G.P., et al.: Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38(9), 1357–1387 (2013)

    Article  Google Scholar 

  26. Schartel, B., Weiß, A.: Temperature inside burning polymer specimens: pyrolysis zone and shielding. Fire Mater. 34(5), 217–235 (2010)

    Google Scholar 

  27. Cevallos, J.G., Bergles, A.E., Bar-Cohen, A., et al.: Polymer heat exchangers—history, opportunities, and challenges. Heat Transf. Eng. 33(13), 1075–1093 (2012)

    Article  Google Scholar 

  28. Liang, J.Z.: Heat Transfer in Polymer Composites Filled with Inorganic Hollow Micro-Spheres: Heat Transfer in Multi-Phase Materials, pp. 163–185. Springer, Berlin (2011)

    Google Scholar 

  29. Strein, E., Colbert, A., Subramaniyan, S., et al.: Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells. Energy Environ. Sci. 6(3), 769–775 (2013)

    Article  Google Scholar 

  30. Alsalhi, M.S., Abu Mustafa, Z.S., Masilamani, V.: External energy transfer in amplified spontaneous emissions from MEH-PPV conjugated polymer. Opt. Laser Technol. 43(1), 147–151 (2011)

    Google Scholar 

  31. Kempel, F., Schartel, B., Linteris, G.T., et al.: Prediction of the mass loss rate of polymer materials: Impact of residue formation. Combust. Flame 159(9), 2974–2984 (2012)

    Article  Google Scholar 

  32. Jiang, F.H., Qi, H.Y., De Ris, J.L., et al.: Heat transfer blockage in small scale combustion of polymers. Sci. China Technol. Sci. 54(9), 2457–2467 (2011)

    Article  Google Scholar 

  33. Tibiletti, L., Longuet, C., Ferry, L., et al.: Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides. Polym. Degrad. Stab. 96(1), 67–75 (2011)

    Article  Google Scholar 

  34. Duquesne, S., Bourbigot, S.: Char formation and characterization. In: Wilkie, C., Morgan, A. (eds.) Fire Retardancy of Polymeric Materials, pp. 239–260. CRC Press, Boca Raton (2009)

    Chapter  Google Scholar 

  35. Gnedin, E.V., Novikov, S.N., Khalturinskij, N.A.: Chemical and physical properties of foamed cokes and their effect on inflammability. Makromol. Chem. Macromol. Symp. 74, 329–333 (1993)

    Article  Google Scholar 

  36. Dasari, A., Yu, Z.Z., Cai, G.P., et al.: Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38(9), 1357–1387 (2013)

    Article  Google Scholar 

  37. Xu, T., Huang, X.: Combustion properties and multistage kinetics models of asphalt binder filled with flame retardant. Combust. Sci. Technol. 183(10), 1027–1038 (2011)

    Article  Google Scholar 

  38. Green, J.: Mechanisms for flame retardancy and smoke suppression—a review. J. Fire Sci. 14, 426–442 (1996)

    Article  Google Scholar 

  39. Singh, H.: Investigation on ignition, pyrolysis and combustion of commercially important polyurethane foams. Fire Eng. 39(1), 7–11 (2014)

    Google Scholar 

  40. Xu, T., Huang, X.: Combustion properties of asphalt binder containing flame retardant. Fire Mater. 36(2), 97–106 (2012)

    Article  Google Scholar 

  41. Tang, Y., Zhuge, J., Lawrence, J., et al.: Flame retardancy of carbon nanofibre/intumescent hybrid paper based fiber reinforced polymer composites. Polym. Degrad. Stab. 96(5), 760–770 (2011)

    Article  Google Scholar 

  42. Xu, T., Huang, X.: A TG-FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process. J. Anal. Appl. Pyrol. 87(2), 217–223 (2010)

    Article  Google Scholar 

  43. Azwa, Z.N., Yousif, B.F., Manalo, A.C., et al.: A review on the degradability of polymeric composites based on natural fibres. Mater. Des 47, 424–442 (2013)

    Article  Google Scholar 

  44. Lu, H., Wilkie, C.A.: Fire performance of flame retardant polypropylene and polystyrene composites screened with microscale combustion calorimetry. Polym. Adv. Technol. 22(1), 14–21 (2011)

    Article  Google Scholar 

  45. Xu, T., Huang, X.: Study on combustion mechanism of asphalt binder by using TG–FTIR technique. Fuel 89(9), 2185–2190 (2010)

    Article  Google Scholar 

  46. Morgan, A.B., Gilman, J.W.: An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 37, 259–279 (2013)

    Article  Google Scholar 

  47. Xu, T., Huang, X.: Pyrolysis properties and kinetic model of an asphalt binder containing a flame retardant. J. Appl. Polym. Sci. 119(5), 2661–2665 (2011)

    Article  Google Scholar 

  48. Xu, T., Huang, X.: Investigation into the properties of asphalt and its mixture filled with flame retardant. Fire Saf. J. 46(6), 330–334 (2011)

    Article  Google Scholar 

  49. Lestari, F., Hayes, A.J., Green, A.R., et al.: An alternative method for in vitro fire smoke toxicity assessment of polymers and composites using human lung cells. Fire Mater. 35(6), 411–429 (2011)

    Article  Google Scholar 

  50. Stec, A.A., Rhodes, J.: Smoke and hydrocarbon yields from fire retarded polymer nanocomposites. Polym. Degrad. Stab. 96(3), 295–300 (2011)

    Article  Google Scholar 

  51. Hull, T.R., Carman, J.M., Purser, D.A.: Prediction of CO evolution from small-scale polymer fires. Polym. Int. 49, 1259–1265 (2000)

    Article  Google Scholar 

  52. Babrauskas, V.: The generation of CO in bench-scale fire tests and the prediction for real-scale fires. Fire Mater. 19, 205–213 (1995)

    Article  Google Scholar 

  53. Hornsby, P.R.: Fire retardant fillers for polymers. Int. Mater. Rev. 46, 199–210 (2001)

    Article  Google Scholar 

  54. Cusack, P.A., Hornsby, P.R.: Zinc stannate-coated fillers: novel flame retardants and smoke suppressants for polymeric materials. J. Vinyl Addit. Technol. 5, 21–30 (1999)

    Article  Google Scholar 

  55. Li, B.: Influence of polymer additives on thermal decomposition and smoke emission of poly (vinyl chloride). Polym. Degrad. Stab. 82, 467–476 (2003)

    Article  Google Scholar 

  56. Mouritz, A.P.: Review of smoke toxicity of fiber-polymer composites used in aircraft. J. Aircr. 46, 737–745 (2009)

    Article  Google Scholar 

  57. Kashiwagi, T., Du, F., Douglas, J.F., Winey, K.I., Harris Jr, R.H., Shields, J.R.: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005)

    Article  Google Scholar 

  58. Du, B., Ma, H., Fang, Z.: How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym. Adv. Technol. 22(7), 1139–1146 (2011)

    Article  Google Scholar 

  59. Hapuarachchi, T.D., Peijs, T.: Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos. Part A: Appl. Sci. Manuf. 41(8), 954–963 (2010)

    Article  Google Scholar 

  60. Morgan, A.B.: A review of transition metal-based flame retardants: transition-metal oxide/salts, and complexes. In: ACS symposium series 1013—fire and polymers V: materials and concepts for fire retardancy, pp. 312–328. Oxford University Press, New York (2009)

    Google Scholar 

  61. Fontaine G, Turf T, Bourbigot S. Salen copper complexes: a novel flame retardant for thermoplastic polyurethane. In: ACS symposium series 1013—fire and polymers V: materials and concepts for fire retardancy, pp. 329–340. Oxford University Press, New York (2009)

    Google Scholar 

  62. Estevao, L.R.M., Le Bras, M., Delobel, R., Nascimento, R.S.V.: Spent refinery catalyst as a synergistic agent in intumescent formulations: influence of the catalyst’s particle size and constituents. Polym. Degrad. Stab. 88, 444–455 (2005)

    Article  Google Scholar 

  63. Kashiwagi, T., Gilman, J.W.: Silicon based flame retardants. In: Grand, A.F., Wilkie, C.A. (eds.) Flame Retardancy of Polymeric Materials, pp. 353–389. Marcel Dekker, Inc., New York (2000)

    Google Scholar 

  64. Gilman, J.W., Ritchie, S.J., Kashiwagi, T., Lomakin, S.M.: Fire-retardant additives for polymeric materials—I. Char formation from silica gel-potassium carbonate. Fire Mater. 21, 23–32 (1997)

    Article  Google Scholar 

  65. Linteris, G.T., Knyazev, V.D., Babushok, V.I.: Inhibition of premixed methane flames by manganese and tin compounds. Combust. Flame 129, 221–238 (2002)

    Article  Google Scholar 

  66. Linteris, G.T., Katta, V.R., Takahashi, F.: Experimental and numerical evaluation of metallic compounds for suppressing cup-burner flames. Combust. Flame 138, 78–96 (2004)

    Article  Google Scholar 

  67. Morgan, A.B., Gilman, J.W.: An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 37, 259–279 (2013)

    Article  Google Scholar 

  68. Yen, Y.Y., Wang, H.T., Guo, W.J.: Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites. Polym. Degrad. Stab. 97(6), 863–869 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully thanks National Natural Science Foundation of China (NSFC, Grant No. 51378264) and Ministry of Housing, Urban-Rural Construction of the People’s Republic of China (MOHURD, Grant No. 2013-K5-15), the Start-up-Grant from Nanjing Forestry University (YJ2012-06), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for their financially supporting my research on fire retardancy of polymeric materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, T. (2015). Recent Developments in Different Techniques Used for the Flame Retardancy. In: Visakh, P., Arao, Y. (eds) Flame Retardants. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03467-6_3

Download citation

Publish with us

Policies and ethics