Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSINTELL))

  • 1201 Accesses

Abstract

In many design process scenarios, the optimization of more than one objective at once is a frequent problem. This setting is a particularly difficult task, when the optimization objectives are conflictive, i.e., minimization of one objective potentially results in maximization of another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    EMOAs are also known as multi-objective evolutionary algorithms (MOEAs).

References

  1. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  3. O. Kramer, P. Koch, Rake selection: a novel evolutionary multi-objective optimization algorithm, in Proceedings of the German Annual Conference on Artificial Intelligence (KI) (Springer, Berlin, 2009), pp. 177–184

    Google Scholar 

  4. F. Edgeworth, Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences (C. Kegan Paul & Co, London, 1881)

    Google Scholar 

  5. H.W. Kuhn, A.W. Tucker, Nonlinear Programming (1951), pp. 481–492

    Google Scholar 

  6. V. Pareto, Cours d’Economie Politique. Lausanne (1896)

    Google Scholar 

  7. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  8. M. Emmerich, N. Beume, B. Naujoks, An EMO algorithm using the hypervolume measure as selection criterion, in Evolutionary Multi-Criterion Optimization (Springer, 2005), pp. 62–76

    Google Scholar 

  9. C.A. Coello Coello, G.B. Lamont, D.A. van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series, 2nd edn. (Springer Science+Business Media, New York, 2007)

    Google Scholar 

  10. D. Goldberg, Genetic Algorithms in Search (Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989)

    MATH  Google Scholar 

  11. J. Horn, N. Nafpliotis, D.E. Goldberg, A niched pareto genetic algorithm for multiobjective optimization, in IEEE Conference on, Evolutionary Computation (1994), pp. 82–87

    Google Scholar 

  12. C.M. Fonseca, P.J. Fleming, Genetic algorithms for multiobjective optimization: formulation, discussion, and generalization, in International Conference on Genetic Algorithms (1993), pp. 416–423

    Google Scholar 

  13. D.A. van Veldhuizen, G.B. Lamont, Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8(2), 125–147 (2000)

    Article  Google Scholar 

  14. J.B. Zydallis, D.A. van Veldhuizen, G.B. Lamont, A statistical comparison of multiobjective evolutionary algorithms including the MOMGA-ii, in Evolutionary Multi-Criterion, Optimization (2001), pp. 226–240

    Google Scholar 

  15. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization, in Evolutionary Methods for Design, Optimisation, and Control with Application to Industrial Problems (EUROGEN) (2002), pp. 95–100

    Google Scholar 

  16. N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2, 221–248 (1994)

    Article  Google Scholar 

  17. H.-G. Beyer, H.-P. Schwefel, Evolution strategies—A comprehensive introduction. Nat. Comput. 1, 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Boyd, L. Vandenberghe, Convex optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  19. O. Kramer, H. Danielsiek, A clustering-based niching framework for the approximation of equivalent pareto-subsets. Int. J. Comput. Intell. Appl. 10(3), 295–311 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kramer .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Kramer, O. (2014). Multiple Objectives. In: A Brief Introduction to Continuous Evolutionary Optimization. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-03422-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03422-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03421-8

  • Online ISBN: 978-3-319-03422-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics