Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2101))

  • 1707 Accesses

Abstract

In this chapter, we will discuss recent developments on the random conductance model (RCM). We will mainly discuss the quenched invariance principle, i.e. the functional central limit theorem which is almost sure with respect to the randomness of the environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Abe, Effective resistances for supercritical percolation clusters in boxes. ArXiv:1306.5580 (2013)

    Google Scholar 

  2. S. Andres, M.T. Barlow, J.-D. Deuschel, B.M. Hambly, Invariance principle for the random conductance model. Probab. Theory Relat. Fields 156, 535–580 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Andres, J.-D. Deuschel, M. Slowik, Invariance principle for the random conductance model in a degenerate ergodic environment. ArXiv:1306.2521 (2013)

    Google Scholar 

  4. P. Antal, A. Pisztora, On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24, 1036–1048 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. M.T. Barlow, Random walks on supercritical percolation clusters. Ann. Probab. 32, 3024–3084 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. M.T. Barlow, K. Burdzy, Á. Timár, Comparison of quenched and annealed invariance principles for random conductance model. ArXiv:1304.3498 (2013)

    Google Scholar 

  7. M.T. Barlow, J. Černý, Convergence to fractional kinetics for random walks associated with unbounded conductances. Probab. Theory Relat. Fields 149, 639–673 (2011)

    Article  MATH  Google Scholar 

  8. M.T. Barlow, J.-D. Deuschel, Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38, 234–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. M.T. Barlow, B.M. Hambly, Parabolic Harnack inequality and local limit theorem for random walks on percolation clusters. Electron. J. Probab. 14, 1–27 (2009)

    MATH  MathSciNet  Google Scholar 

  10. M.T. Barlow, Y. Peres, P. Sousi, Collisions of random walks. Ann. Inst. Henri Poincaré Probab. Stat. 48, 922–946 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. M.T. Barlow, X. Zheng, The random conductance model with Cauchy tails. Ann. Appl. Probab. 20, 869–889 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Ben Arous, M. Cabezas, J. Černý, R. Royfman, Randomly trapped random walks. ArXiv:1302.7227 (2013)

    Google Scholar 

  13. G. Ben Arous, J. Černý, Bouchaud’s model exhibits two aging regimes in dimension one. Ann. Appl. Probab. 15, 1161–1192 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Ben Arous, J. Černý, Scaling limit for trap models on \({\mathbb{Z}}^{d}\). Ann. Probab. 35, 2356–2384 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Ben Arous, A. Fribergh, N. Gantert, A. Hammond, Biased random walks on Galton-Watson trees with leaves. Ann. Probab. 40, 280–338 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Ben Arous, Y. Hu, S. Olla, O. Zeitouni, Einstein relation for biased random walk on Galton-Watson trees. Ann. Inst. Henri Poincaré Probab. Stat. 49, 698–721 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. I. Benjamini, H. Duminil-Copin, G. Kozma, A. Yadin, Disorder, entropy and harmonic functions. ArXiv:1111.4853 (2011)

    Google Scholar 

  18. I. Benjamini, E. Mossel, On the mixing time of simple random walk on the super critical percolation cluster. Probab. Theory Relat. Fields 125, 408–420 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Berger, M. Biskup, Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137, 83–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Berger, M. Biskup, C.E. Hoffman, G. Kozma, Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 44, 374–392 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. N. Berger, J.-D. Deuschel, A quenched invariance principle for non-elliptic random walk in i.i.d. balanced random environment. Probab. Theory Relat. Fields (to appear)

    Google Scholar 

  22. N. Berger, N. Gantert, Y. Peres, The speed of biased random walk on percolation clusters. Probab. Theory Relat. Fields 126, 221–242 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Biskup, Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Biskup, O. Boukhadra, Subdiffusive heat-kernel decay in four-dimensional i.i.d. random conductance models. J. Lond. Math. Soc. (2) 86, 455–481 (2012)

    Google Scholar 

  25. M. Biskup, O. Louidor, E.B. Procaccia, R. Rosenthal, Isoperimetry in two-dimensional percolation. ArXiv:1211.0745 (2012)

    Google Scholar 

  26. M. Biskup, O. Louidor, A. Rozinov, A. Vandenberg-Rodes, Trapping in the random conductance model. J. Stat. Phys. 150, 66–87 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Biskup, T.M. Prescott, Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12, 1323–1348 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Biskup, M. Salvi, T. Wolff, A central limit theorem for the effective conductance: I. Linear boundary data and small ellipticity contrasts. ArXiv:1210.2371 (2012)

    Google Scholar 

  29. M. Biskup, H. Spohn, Scaling limit for a class of gradient fields with non-convex potentials. Ann. Probab. 39, 224–251 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Boivin, C. Rau, Existence of the harmonic measure for random walks on graphs and in random environments. J. Stat. Phys. 150, 235–263 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  32. E. Bolthausen, A.-S. Sznitman, Ten Lectures on Random Media. DMV Seminar, vol. 32 (Birkhäuser Verlag, Basel, 2002)

    Google Scholar 

  33. O. Boukhadra, Heat-kernel estimates for random walk among random conductances with heavy tail. Stoch. Process. Their Appl. 120, 182–194 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. O. Boukhadra, P. Mathieu, The polynomial lower tail random conductances model. ArXiv:1308.1067 (2013)

    Google Scholar 

  35. P. Caputo, D. Ioffe, Finite volume approximation of the effective diffusion matrix: the case of independent bond disorder. Ann. Inst. Henri Poincaré Probab. Stat. 39, 505–525 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Černý, On two-dimensional random walk among heavy-tailed conductances. Electron. J. Probab. 16, 293–313 (2011, Paper no. 10)

    Google Scholar 

  37. D. Chen, X. Chen, Two random walks on the open cluster of \({\mathbb{Z}}^{2}\) meet infinitely often. Sci. China Math. 53, 1971–1978 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Z.-Q. Chen, D. Croydon, T. Kumagai, Quenched invariance principles for random walks and elliptic diffusions in random media with boundary. ArXiv:1306.0076 (2013)

    Google Scholar 

  39. D. Croydon, A. Fribergh, T. Kumagai, Biased random walk on critical Galton-Watson trees conditioned to survive. Probab. Theory Relat. Fields 157, 453–507 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. D.A. Croydon, B.M. Hambly, Local limit theorems for sequences of simple random walks on graphs. Potential Anal. 29, 351–389 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15, 181–232 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. T. Delmotte, J.-D. Deuschel, On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to \(\nabla \phi\) interface model. Probab. Theory Relat. Fields 133, 358–390 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. A. De Masi, P.A. Ferrari, S. Goldstein, W.D. Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55, 787–855 (1989)

    MATH  Google Scholar 

  44. A. Drewitz, A.F. Ramírez, Selected topics in random walk in random environment. ArXiv:1309.2589 (2013)

    Google Scholar 

  45. R. Durrett, Probability: Theory and Examples, 4th edn. (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  46. A. Einstein, Die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeit suspendierten Teilchen. Ann. d. Phys. 17, 549–560 (1905)

    Article  MATH  Google Scholar 

  47. N. Enriquez, C. Sabot, O. Zindy, Limit laws for transient random walks in random environment on \(\mathbb{Z}\). Ann. Inst. Fourier (Grenoble) 59, 2469–2508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. P.A. Ferrari, R.M. Grisi, P. Groisman, Harmonic deformation of Delaunay triangulations. Stoch. Process. Their Appl. 122, 2185–2210 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  49. L.R.G. Fontes, M. Isopi, C.M. Newman, Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab. 30, 579–604 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. L.R.G. Fontes, P. Mathieu, On symmetric random walks with random conductances on \({\mathbb{Z}}^{d}\). Probab. Theory Relat. Fields 134, 565–602 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. A. Fribergh, A. Hammond, Phase transition for the speed of the biased random walk on the supercritical percolation cluster. Commun. Pure Appl. Math. (to appear)

    Google Scholar 

  52. R. Fukushima, N. Kubota, Quenched large deviations for multidimensional random walk in random environment with holding times. J. Theor. Probab. (to appear)

    Google Scholar 

  53. N. Gantert, P. Mathieu, A. Piatnitski, Einstein relation for reversible diffusions in a random environment. Commun. Pure Appl. Math. 65, 187–228 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  54. G. Giacomin, S. Olla, H. Spohn, Equilibrium fluctuations for \(\nabla \phi\) interface model. Ann. Probab. 29, 1138–1172 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  55. A. Gloria, J.-C. Mourrat, Quantitative version of the Kipnis-Varadhan theorem and Monte Carlo approximation of homogenized coefficients. Ann. Appl. Probab. 23, 1544–1583 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  56. A. Gloria, S. Neukamm, F. Otto, Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Preprint 2013

    Google Scholar 

  57. A. Gloria, F. Otto, An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39, 779–856 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  58. A. Gloria, F. Otto, An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22, 1–28 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  59. G. Grimmett, Percolation, 2nd edn. (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  60. X. Guo, Einstein relation for random walks in balanced random environment. ArXiv:1212.0255 (2012)

    Google Scholar 

  61. X. Guo, O. Zeitouni, Quenched invariance principle for random walks in balanced random environment. Probab. Theory Relat. Fields 152, 207–230 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  62. A. Hammond, Stable limit laws for randomly biased walks on supercritical trees. Ann. Probab. 41, 1694–1766 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  63. V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin, 1994)

    Book  Google Scholar 

  64. C. Kipnis, S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  65. T. Komorowski, S. Olla, On mobility and Einstein relation for tracers in time-mixing random environments. J. Stat. Phys. 118, 407–435 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  66. T. Komorowski, S. Olla, Einstein relation for random walks in random environments. Stoch. Process. Their Appl. 115, 1279–1301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  67. T. Komorowski, C. Landim, S. Olla, Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation. Grundlehren der mathematischen Wissenschaften, vol. 345 (Springer, Berlin, 2012)

    Google Scholar 

  68. W. König, M. Salvi, T. Wolff, Large deviations for the local times of a random walk among random conductances. Electron. Commun. Probab. 17, 1–11 (2012, Paper no. 10)

    Google Scholar 

  69. S.M. Kozlov, The method of averaging and walks in inhomogeneous environments. Russ. Math. Surv. 40, 73–145 (1985)

    Article  MATH  Google Scholar 

  70. N. Kubota, Large deviations for simple random walk on supercritical percolation clusters. Kodai Math. J. 35, 560–575 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  71. G.F. Lawler, Weak convergence of a random walk in a random environment. Commun. Math. Phys. 87, 81–87 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  72. J.L. Lebowitz, H. Rost, The Einstein relation for the displacement of a test particle in a random environment. Stoch. Process. Their Appl. 54, 183–196 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  73. D. Levin, Y. Peres, E. Wilmer, Markov Chains and Mixing Times (American Mathematical Society, Providence, 2009)

    MATH  Google Scholar 

  74. M. Loulakis, Einstein relation for a tagged particle in simple exclusion processes. Commun. Math. Phys. 229, 347–367 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  75. R. Lyons, R. Pemantle, Y. Peres, Biased random walks on Galton-Watson trees. Probab. Theory Relat. Fields 106, 249–264 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  76. D. Marahrens, F. Otto, Annealed estimates on the Green’s function. ArXiv:1304.4408 (2013)

    Google Scholar 

  77. P. Mathieu, Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130, 1025–1046 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  78. P. Mathieu, A. Piatnitski, Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. A 463, 2287–2307 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  79. P. Mathieu, E. Remy, Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32, 100–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  80. J.C. Mourrat, Scaling limit of the random walk among random traps on \({\mathbb{Z}}^{d}\). Ann. Inst. Henri Poincaré Probab. Stat. 47, 813–849 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  81. J.C. Mourrat, Variance decay for functionals of the environment viewed by the particle. Ann. Inst. Henri Poincaré Probab. Stat. 47, 294–327 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  82. J.C. Mourrat, A quantitative central limit theorem for the random walk among random conductances. Electron. J. Probab. 17(97), 17 pp. (2012)

    Google Scholar 

  83. G.C. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in Random Fields, Vol. I, II (Esztergom, 1979). Colloq. Math. Soc. János Bolyai, vol. 27 (North-Holland, Amsterdam, 1981), pp. 835–873

    Google Scholar 

  84. G. Pete, A note on percolation on \({\mathbb{Z}}^{d}\): isoperimetric profile via exponential cluster repulsion. Electron. Commun. Probab. 13, 377–392 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  85. E. Procaccia, R. Rosenthal, A. Sapozhnikov, Quenched invariance principle for simple random walk on clusters in correlated percolation models. ArXiv:1310.4764 (2013)

    Google Scholar 

  86. F. Rassoul-Agha, T. Seppäläinen, An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Relat. Fields 133, 299–314 (2005)

    Article  MATH  Google Scholar 

  87. C. Rau, Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation. Bull. Soc. Math. France 135, 135–169 (2007)

    MATH  MathSciNet  Google Scholar 

  88. V. Sidoravicius, A.-S. Sznitman, Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129, 219–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  89. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  90. A-S. Sznitman, On the anisotropic walk on the supercritical percolation cluster. Commun. Math. Phys. 240, 123–148 (2003)

    Google Scholar 

  91. A-S. Sznitman, Topics in random walks in random environment, in School and Conference on Probability Theory. ICTP Lecture Notes, vol. XVII (Abdus Salam International Centre for Theoretical Physics, Trieste, 2004), pp. 203–266 (electronic)

    Google Scholar 

  92. G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  93. O. Zeitouni, Random walks in random environment, in Ecole d’Eté de Probabilités de Saint-Flour XXXI—2001. Lecture Notes in Mathematics, vol. 1837 (Springer, Berlin, 2004), pp. 189–312

    Google Scholar 

  94. O. Zeitouni, Random walks and diffusions in random environments. J. Phys. A Math. Gen. 39, R433–R464 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  95. O. Zindy, Scaling limit and aging for directed trap models. Markov Process. Relat. Fields 15, 31–50 (2009)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumagai, T. (2014). Random Conductance Model. In: Random Walks on Disordered Media and their Scaling Limits. Lecture Notes in Mathematics(), vol 2101. Springer, Cham. https://doi.org/10.1007/978-3-319-03152-1_8

Download citation

Publish with us

Policies and ethics