Skip to main content

Heat Kernel Estimates for Random Weighted Graphs

  • Chapter
  • First Online:
Random Walks on Disordered Media and their Scaling Limits

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2101))

  • 1606 Accesses

Abstract

From this chapter, we consider the situation where we have a random weighted graph \(\{(X(\omega ){,\mu }^{\omega }):\omega \in \varOmega \}\) on a probability space \((\varOmega,\mathcal{F}, \mathbb{P})\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Alexander, R. Orbach, Density of states on fractals: “fractons”. J. Phys. (Paris) Lett. 43, L625–L631 (1982)

    Article  Google Scholar 

  2. M.T. Barlow, A.A. Járai, T. Kumagai, G. Slade, Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278, 385–431 (2008)

    Article  MATH  Google Scholar 

  3. M.T. Barlow, T. Kumagai, Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50, 33–65 (2006) (electronic)

    Google Scholar 

  4. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  5. D.A. Croydon, Heat kernel fluctuations for a resistance form with non-uniform volume growth. Proc. Lond. Math. Soc. (3) 94, 672–694 (2007)

    Google Scholar 

  6. R. Fitzner, Non-backtracking lace expansion, Ph.D. Thesis, The Eindhoven University of Technology, 2013, http://www.win.tue.nl/~rfitzner/NoBLE/index.html

  7. R. Fitzner, R. van der Hofstad, Nearest-neighbor percolation function is continuous for d ≥ 15. (Tentative title) (2013, in preparation)

    Google Scholar 

  8. P.G. de Gennes, La percolation: un concept unificateur. La Recherche 7, 919–927 (1976)

    Google Scholar 

  9. G. Grimmett, Percolation, 2nd edn. (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  10. R. van der Hofstad, A.A. Járai, The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys. 114, 625–663 (2004)

    Article  MATH  Google Scholar 

  11. B.D. Hughes, Random Walks and Random Environments, Volume 2: Random Environments (Oxford University Press, Oxford, 1996)

    Google Scholar 

  12. H. Kesten, Percolation Theory for Mathematicians. Progress in Probability and Statistics, vol. 2 (Birkhäuser, Boston, 1982), iv+423 pp. Available at http://www.math.cornell.edu/~kesten/kesten-book.html

  13. H. Kesten, The incipient infinite cluster in two-dimensional percolation. Probab. Theory Relat. Fields 73, 369–394 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Kozma, A. Nachmias, The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178, 635–654 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Kumagai, J. Misumi, Heat kernel estimates for strongly recurrent random walk on random media. J. Theor. Probab. 21, 910–935 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Slade, The Lace Expansion and its Applications. Ecole d’Eté de Probabilités de Saint-Flour XXXIV—2004. Lecture Notes in Mathematics, vol. 1879 (Springer, Berlin, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumagai, T. (2014). Heat Kernel Estimates for Random Weighted Graphs. In: Random Walks on Disordered Media and their Scaling Limits. Lecture Notes in Mathematics(), vol 2101. Springer, Cham. https://doi.org/10.1007/978-3-319-03152-1_5

Download citation

Publish with us

Policies and ethics