Skip to main content

Weighted Graphs and the Associated Markov Chains

  • Chapter
  • First Online:
Random Walks on Disordered Media and their Scaling Limits

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2101))

  • 1622 Accesses

Abstract

In this chapter, we discuss general potential theory for symmetric (reversible) Markov chains on weighted graphs. Note that there are many nice books and lecture notes that treat potential theory and/or Markov chains on graphs, for example [7, 20, 93, 118, 125, 175, 195, 204, 211]. While writing this chapter, we are largely influenced by the lecture notes by Barlow [20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Aldous, J. Fill, Reversible Markov Chains and Random Walks on Graphs (Book in preparation), http://www.stat.berkeley.edu/~aldous/RWG/book.html

  2. M.T. Barlow, Random Walks on Graphs (Cambridge University Press, to appear)

    Google Scholar 

  3. R.F. Bass, A stability theorem for elliptic Harnack inequalities. J. Eur. Math. Soc. 17, 856–876 (2013)

    Google Scholar 

  4. I. Benjamini, Instability of the Liouville property for quasi-isometric graphs and manifolds of polynomial volume growth. J. Theor. Probab. 4, 631–637 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  6. Z.-Q. Chen, M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory (Princeton University Press, Princeton, 2011)

    Google Scholar 

  7. T. Coulhon, L. Saloff-Coste, Variétés riemanniennes isométriques à l’infini. Rev. Mat. Iberoam. 11, 687–726 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. P.G. Doyle, J.L. Snell, Random Walks and Electric Networks (Mathematical Association of America, Washington, 1984). ArXiv:math/0001057

    Google Scholar 

  9. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes (de Gruyter, Berlin, 1994)

    Book  MATH  Google Scholar 

  10. A. Grigor’yan, Analysis on Graphs (2012). http://www.math.uni-bielefeld.de/~grigor/aglect.pdf

  11. M. Gromov, Hyperbolic manifolds, groups and actions, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, State University of New York, Stony Brook, 1978. Annals of Mathematics Studies, vol. 97 (Princeton University Press, Princeton, 1981), pp. 183–213

    Google Scholar 

  12. A. Guionnet, B. Zegarlinksi, Lectures on logarithmic Sobolev inequalities, in Séminaire de Probabilités XXXVI. Lecture Notes in Mathematics, vol. 1801 (Springer, Berlin, 2003), pp. 1–134

    Google Scholar 

  13. B.M. Hambly, T. Kumagai, Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries, in Fractal Geometry and Applications: A Jubilee of B. Mandelbrot, Proceedings of Symposia in Pure Mathematics, vol. 72, Part 2 (American Mathematical Society, Providence, 2004), pp. 233–260

    Google Scholar 

  14. M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact riemannian manifolds. J. Math. Soc. Jpn. 37, 391–413 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Kanai, Analytic inequalities, and rough isometries between non-compact riemannian manifolds, in Lecture Notes in Mathematics, vol. 1201 (Springer, Berlin, 1986), pp. 122–137

    Google Scholar 

  16. J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates. Mem. Amer. Math. Soc. 216(1015), vi+132 pp. (2012)

    Google Scholar 

  17. R. Lyons, Y. Peres, Probability on Trees and Networks (Book in preparation), http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html

  18. T. Lyons, Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Differ. Geom. 26, 33–66 (1987)

    MATH  MathSciNet  Google Scholar 

  19. J. Norris, Markov Chains (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  20. L. Saloff-Coste, Lectures on finite Markov chains, in Ecole d’Eté de Probabilités de Saint-Flour XXVI-1996. Lecture Notes in Mathematics, vol. 1665 (Springer, Berlin, 1997), pp. 301–413

    Google Scholar 

  21. P.M. Soardi, Potential Theory on Infinite Networks. Lecture Notes in Mathematics, vol. 1590 (Springer, Berlin, 1994)

    Google Scholar 

  22. W. Woess, in Random Walks on Infinite Graphs and Groups (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumagai, T. (2014). Weighted Graphs and the Associated Markov Chains. In: Random Walks on Disordered Media and their Scaling Limits. Lecture Notes in Mathematics(), vol 2101. Springer, Cham. https://doi.org/10.1007/978-3-319-03152-1_2

Download citation

Publish with us

Policies and ethics