Skip to main content

Crackling Noise in Basalt and Gabbro

  • Chapter
  • First Online:
Rheological and Seismic Properties of Solid-Melt Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 783 Accesses

Abstract

A variety of systems ranging in size from as small as a crumpling piece of paper to as large as earthquakes on fault planes can produce crackling noise. A piece of paper crumples when it is squeezed into a ball. Small parts of the paper bend and jump into the new configurations to emit crackle sounds during the process. The Earth responds through earthquakes when tectonic plates interact with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59(4), 381–384.

    Article  Google Scholar 

  2. Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical Review A, 38(1), 364–374.

    Article  Google Scholar 

  3. Gutenberg, B., & Richter, C. (1954). Seismicity of the earth and associated phenomena (2nd ed.). Princeton: Princeton University Press. (1st ed. 1949).

    Google Scholar 

  4. Sethna, J. P., Dahmen, K. A., & Myers, C. R. (2001). Crackling noise. Nature, 410(6825), 242–250.

    Article  Google Scholar 

  5. Olami, Z., Feder, H. J. S., & Christensen, K. (1992). Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Physical Review Letters, 68(8), 1244–1247.

    Article  Google Scholar 

  6. Pacheco, J. F., Scholz, C. H., & Sykes, L. R. (1992). Changes in frequency-size relationship from small to large earthquakes. Nature, 355(6355), 71–73.

    Article  Google Scholar 

  7. Niccolini, G., Durin, G., Carpinteri, A., Lacidogna, G., & Manuello, A. (2009). Crackling noise and universality in fracture systems. Journal of Statistical Mechanics: Theory and Experiment, 2009(1), P010203.

    Google Scholar 

  8. Halász, Z., Timár, G., & Kun, F. (2010). The effect of disorder on crackling noise in fracture phenomena. Progress of Theoretical Physics Supplement, 184, 385–399.

    Article  Google Scholar 

  9. Chmel, A., Kuksenko, V. S., Smirnov, V. S., & Tomilin, N. G. (2007). Anomalies of critical state in fracturing geophysical objects. Nonlinear Processes in Geophysics, 14(2), 103–108.

    Article  Google Scholar 

  10. Salje, E. K. H., Koppensteiner, J., Reinecker, M., Schranz, W., & Planes, A. (2009). Jerky elasticity: Avalanches and the martensitic transition in cu\({_{74.08}}\)al\({_{23.13}}\)be\({_{2.79}}\) shape-memory alloy. Applied Physics Letters, 95(23), 231908.

    Article  Google Scholar 

  11. Bonnot, E., Mańosa, L., Soto-Parra, A., Vives, D., Ludwig, E., & Strothkaemper, C. (2008). Acoustic emission in the fcc-fct martensitic transition of fe_68.8pd_31.2. Physical Review B, 78(18), 184103.

    Google Scholar 

  12. Gallardo, M. C., Manchado, J., Romero, F. J., Salje, E. K. H., Planes, A., Vives, E., et al. (2010). Avalanche criticality in the martensitic transition of cu\({_{67.64}}\)zn\({_{16.71}}\)al\( _{15.65} shape-memory alloy: A calorimetric and acoustic emission study .\) Physical Review B, 81(17), 174102.

    Google Scholar 

  13. Koivisto, J., Rosti, J., & Alava, M. J. (2007). Creep of a fracture line in paper peeling. Physical Review Letters, 99(14), 145504.

    Article  Google Scholar 

  14. Laurson, L., Santucci, S., & Zapperi, S. (2010). Avalanches and clusters in planar crack front propagation. Physical Review E, 81(4), 046116.

    Article  Google Scholar 

  15. Colaiori, F. (2008). Exactly solvable model of avalanches dynamics for barkhausen crackling noise. Advances in Physics, 57(4), 287–359.

    Article  Google Scholar 

  16. Kun, F., & Halász, Z, Jr. (2009). Crackling noise in sub-critical fracture of heterogeneous materials. Journal of Statistical Mechanics: Theory and Experiment, 2009(01), P01021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Ying Chien .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chien, SY. (2014). Crackling Noise in Basalt and Gabbro. In: Rheological and Seismic Properties of Solid-Melt Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-03098-2_6

Download citation

Publish with us

Policies and ethics