Skip to main content

Stimulus-Response Reliability of Biological Networks

  • Chapter
  • First Online:
Nonautonomous Dynamical Systems in the Life Sciences

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2102))

Abstract

If a network of cells is repeatedly driven by the same sustained, complex signal, will it give the same response each time? A system whose response is reproducible across repeated trials is said to be reliable. Reliability is of interest in, e.g., computational neuroscience because the degree to which a neuronal network is reliable constrains its ability to encode information via precise temporal patterns of spikes. This chapter reviews a body of work aimed at discovering network conditions and dynamical mechanisms that can affect the reliability of a network. A number of results are surveyed here, including a general condition for reliability and studies of specific mechanisms for reliable and unreliable behavior in concrete models. This work relies on qualitative arguments using random dynamical systems theory, in combination with systematic numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Theta neurons can also model neurons operating in an excitable regime. The reliability of excitable theta neuron networks is studied in [22].

  2. 2.

    See, e.g., [5], but note that phase truncations can sometimes miss important dynamical effects [30], and their use in biological modeling should be carefully justified.

  3. 3.

    The fiber exponent can be defined exactly as in (4.6), but with the tangent vector v chosen to lie in the subspace tangent to each fiber; note these subspaces are invariant due to the skew product structure.

  4. 4.

    It is straightforward to show that there is always a unique modular decomposition connected by an acyclic graph that is “maximal” in the sense that it cannot be refined any further without introducing cycles into the quotient graph.

  5. 5.

    These results have been extended to certain nonlinear parabolic PDEs [32] and periodically-kicked homoclinic loops [37].

  6. 6.

    A rough estimate shows that when A = 2, each kick should be sufficient to drive the oscillator roughly 1/3 of the way around its cycle.

References

  1. L. Arnold, Random Dynamical Systems (Springer, New York, 2003)

    Google Scholar 

  2. W. Bair, E. Zohary, W.T. Newsome, Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21(5), 1676–1697 (2001)

    Google Scholar 

  3. P.H. Baxendale, Stability and equilibrium properties of stochastic flows of diffeomorphisms, in Progress in Probability, vol. 27 (Birkhauser, Basel, 1992)

    Google Scholar 

  4. M. Berry, D. Warland, M. Meister, The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. 94, 5411–5416 (1997)

    Article  Google Scholar 

  5. E. Brown, P. Holmes, J. Moehlis, Globally coupled oscillator networks, in Problems and Perspectives in Nonlinear Science: A celebratory volume in honor of Lawrence Sirovich, ed. by E. Kaplan, J.E. Marsden, K.R. Sreenivasan (Springer, New York, 2003), pp. 183–215

    Chapter  Google Scholar 

  6. H.L. Bryant, J.P. Segundo, Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. 260, 279–314 (1976)

    Google Scholar 

  7. R. de Reuter van Steveninck, R. Lewen, S. Strong, R. Koberle, W. Bialek, Reproducibility and variability in neuronal spike trains. Science 275, 1805–1808 (1997)

    Article  Google Scholar 

  8. R.E.L. Deville, N. Sri Namachchivaya, Z. Rapti, Stability of a stochastic two-dimensional non-Hamiltonian system. SIAM J. Appl. Math. 71, 1458–1475 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. A.S. Ecker, P. Berens, G.A. Keliris, M. Bethge, N.K. Logothetis, A.S. Tolias. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010)

    Article  Google Scholar 

  10. J.-P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. G.B. Ermentrout, Type I membranes, phase resetting curves and synchrony. Neural Comput. 8, 979–1001 (1996)

    Article  Google Scholar 

  12. G.B. Ermentrout, D. Terman, Foundations of Mathematical Neuroscience (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  13. A.A. Faisal, L.P.J. Selen, D.M. Wolpert, Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)

    Article  Google Scholar 

  14. J.-M. Fellous, P.H.E. Tiesinga, P.J. Thomas, T.J. Sejnowski, Discovering spike patterns in neuronal responses. J. Neurosci. 24, 2989–3001 (2004)

    Article  Google Scholar 

  15. D. Goldobin, A. Pikovsky, Antireliability of noise-driven neurons. Phys. Rev. E 73, 061906-1–061906-4 (2006)

    Google Scholar 

  16. J. Hunter, J. Milton, P. Thomas, J. Cowan, Resonance effect for neural spike time reliability. J.Ñeurophysiol. 80, 1427–1438 (1998)

    Google Scholar 

  17. P. Kara, P. Reinagel, R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 636–646 (2000)

    Article  Google Scholar 

  18. Yu. Kifer, Ergodic Theory of Random Transformations (Birkhauser, Basel, 1986)

    Book  MATH  Google Scholar 

  19. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, New York, 2011)

    Google Scholar 

  20. E. Kosmidis, K. Pakdaman, Analysis of reliability in the Fitzhugh–Nagumo neuron model. J.C̃omput. Neurosci. 14, 5–22 (2003)

    Google Scholar 

  21. H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics, vol. 24 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  22. G. Lajoie, K.K. Lin, E. Shea-Brown, Chaos and reliability in balanced spiking networks with temporal drive. Phys. Rev. E 87 (2013)

    Google Scholar 

  23. Y. Le Jan. Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Stat. 23(1), 111–120 (1987)

    MATH  MathSciNet  Google Scholar 

  24. F. Ledrappier, L.-S. Young, Entropy formula for random transformations. Probab. Theory Relat. Fields 80, 217–240 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. K.K. Lin, L.-S. Young, Shear-induced chaos. Nonlinearity 21, 899–922 (2008)

    MATH  MathSciNet  Google Scholar 

  26. K.K. Lin, L.-S. Young, Dynamics of periodically-kicked oscillators. J. Fixed Point Theory Appl. 7, 291–312 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. K.K. Lin, E. Shea-Brown, L.-S. Young, Reliability of coupled oscillators. J. Nonlin. Sci. 19, 497–545 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. K.K. Lin, E. Shea-Brown, L.-S. Young, Spike-time reliability of layered neural oscillator networks. J. Comput. Neurosci. 27, 135–160 (2009)

    Article  MathSciNet  Google Scholar 

  29. K.K. Lin, E. Shea-Brown, L.-S. Young, Reliability of layered neural oscillator networks. Commun. Math. Sci. 7, 239–247 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. K.K. Lin, K.C.A. Wedgwood, S. Coombes, L.-S. Young, Limitations of perturbative techniques in the analysis of rhythms and oscillations. J. Math. Biol. 66, 139–161 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Lu, L. Liang, X. Wang, Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4, 1131–1138 (2001)

    Article  Google Scholar 

  32. K. Lu, Q. Wang, L.-S. Young, Strange Attractors for Periodically Forced Parabolic Equations. Memoirs of the AMS, American Mathematical Society, (Providence, Rhode Island, 2013)

    Google Scholar 

  33. Z. Mainen, T. Sejnowski, Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995)

    Article  Google Scholar 

  34. G. Murphy, F. Rieke, Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511–524 (2007)

    Article  Google Scholar 

  35. H. Nakao, K. Arai, K. Nagai, Y. Tsubo, Y. Kuramoto. Synchrony of limit-cycle oscillators induced by random external impulses. Phys. Rev. E 72, 026220-1–026220-13 (2005)

    Google Scholar 

  36. D. Nualart, The Malliavin Calculus and Related Topics (Springer, Berlin, 2006)

    MATH  Google Scholar 

  37. W. Ott, Q. Wang, Dissipative homoclinic loops of two-dimensional maps and strange attractors with one direction of instability. Commun. Pure Appl. Math. 64, 1439–1496 (2011)

    MATH  MathSciNet  Google Scholar 

  38. K. Pakdaman, D. Mestivier, External noise synchronizes forced oscillators. Phys. Rev. E 64, 030901–030904 (2001)

    Article  Google Scholar 

  39. J. Ritt, Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E 68, 041915–041921 (2003)

    Article  MathSciNet  Google Scholar 

  40. J. Teramae, T. Fukai, Reliability of temporal coding on pulse-coupled networks of oscillators. arXiv:0708.0862v1 [nlin.AO] (2007)

    Google Scholar 

  41. J. Teramae, D. Tanaka, Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett. 93, 204103–204106 (2004)

    Article  Google Scholar 

  42. A. Uchida, R. McAllister, R. Roy, Consistency of nonlinear system response to complex drive signals. Phys. Rev. Lett. 93, 244102 (2004)

    Article  Google Scholar 

  43. B.P. Uberuaga, M. Anghel, A.F. Voter, Synchronization of trajectories in canonical molecular-dynamics simulations: observation, explanation, and exploitation. J. Chem. Phys. 120, 6363–6374 (2004)

    Article  Google Scholar 

  44. S. Varigonda, T. Kalmar-Nagy, B. LaBarre, I. Mezić, Graph decomposition methods for uncertainty propagation in complex, nonlinear interconnected dynamical systems, in 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004)

    Google Scholar 

  45. Q. Wang, L.-S. Young, Strange attractors with one direction of instability. Commun. Math. Phys. 218, 1–97 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  46. Q. Wang, L.-S. Young, From invariant curves to strange attractors. Commun. Math. Phys. 225, 275–304 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. Q. Wang, L.-S. Young, Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun. Math. Phys. 240, 509–529 (2003)

    MATH  MathSciNet  Google Scholar 

  48. Q. Wang, L.-S. Young, Toward a theory of rank one attractors. Ann. Math. 167, 349–480 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  49. A. Winfree, The Geometry of Biological Time (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  50. L.-S. Young, Ergodic theory of differentiable dynamical systems, in Real and Complex Dynamics, NATO ASI Series (Kluwer, Dordrecht, 1995), pp. 293–336

    Google Scholar 

  51. L.-S. Young, What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5), 733–754 (2002)

    Article  MATH  Google Scholar 

  52. G. Zaslavsky, The simplest case of a strange attractor. Phys. Lett. 69A(3), 145–147 (1978)

    Article  MathSciNet  Google Scholar 

  53. C. Zhou, J. Kurths, Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 13, 401–409 (2003)

    Google Scholar 

Download references

Acknowledgements

The work described in this review were supported in part by the Burroughs-Wellcome Fund (Eric Shea-Brown) and the NSF (Lai-Sang Young and Kevin K Lin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, K.K. (2013). Stimulus-Response Reliability of Biological Networks. In: Kloeden, P., Pötzsche, C. (eds) Nonautonomous Dynamical Systems in the Life Sciences. Lecture Notes in Mathematics(), vol 2102. Springer, Cham. https://doi.org/10.1007/978-3-319-03080-7_4

Download citation

Publish with us

Policies and ethics