Skip to main content

EROI of Solar PV

  • Chapter
  • First Online:
Energy in Australia

Part of the book series: SpringerBriefs in Energy ((ENERGYANALYS))

  • 1613 Accesses

Abstract

Life-cycle assessments (LCAs) are the most common tool to assess the environment impacts of products and processes. LCAs provide a consistent framework to measure the inputs (energy, water, natural resources, etc.) and outputs (energy, wastes, emissions, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alstone P. Embodied energy and off-grid lighting. Berkeley: Lawrence Berkeley National Laboratory; 2012.

    Google Scholar 

  • Australian Bureau of Statistics (ABS). 5206.0 Australian national accounts: national income, expenditure and product. Canberra: ABS; 2012.

    Google Scholar 

  • Australian Energy Market Operator (AEMO). 100 percent renewables study—modelling outcomes. Melbourne, Australia; 2013.

    Google Scholar 

  • Australian Productivity Commission. Electricity network regulatory frameworks report. Canberra: Productivity Commission; 2013.

    Google Scholar 

  • Blakers A, Weber K. The energy intensity of photovoltaic systems. Centre Sustain Energy Syst Aust Nat Univ. 2000.

    Google Scholar 

  • Bossel U. The hydrogen illusion: why electrons are a better energy carrier. Cogener On-site Power Production. 2004; 55–9.

    Google Scholar 

  • Bundesministerium für Wirtschaft und Technologie. Generating capacity, gross electricity generation and gross consumption Germany. Available online: http://www.bmwi.de/BMWi/Redaktion/Binaer/Energiedaten/energietraeger10-stromerzeugungskapazitaeten-bruttostromerzeugung,property=blob,bereich=bmwi2012,sprache=de,rwb=true.xls (2013). Accessed 1 Jan 2013.

  • Cleveland CJ. Net energy from the extraction of oil and gas in the United States. Energy. 2005;30(5):769–82.

    Article  Google Scholar 

  • Cleveland CJ, Costanza R, Hall CAS, Kaufman R. Energy and the U.S. economy: a biphysical perspective. Science. 1984;225:890–7.

    Google Scholar 

  • Climate commission. The critical decade: Australia’s future—solar energy; 2013.

    Google Scholar 

  • Crawford RH. Validation of a hybrid life-cycle inventory analysis method. J Environ Manage. 2008;88(3):496–506.

    Article  Google Scholar 

  • Crawford RH, Stephan A. The significance of embodied energy in certified passive houses. World Academy of Science, Engineering and Technology. 2013. p. 78.

    Google Scholar 

  • Dale M. A Comparative analysis of energy costs of photovoltaic, solar thermal, and wind electricity generation technologies. Appl Sci. 2013;3:325–37.

    Article  Google Scholar 

  • Deloitte. Advanced metering infrastructure customer impacts study, vol. 1. Melbourne: Department of Primary Industries; 2011.

    Google Scholar 

  • Denholm P, Margolis RM. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energ Policy. 2007;35(5):2852–61.

    Article  Google Scholar 

  • Department of climate change and energy efficiency. Annual report 2011–12. Canberra: ACT; 2012b.

    Google Scholar 

  • Department of climate change and energy efficiency. Securing a clean energy future: the Australian government’s climate change plan. Canberra: ACT; 2012c.

    Google Scholar 

  • Department of climate change and energy efficiency. 100 percent renewables study—scope. Canberra: ACT; 2012a.

    Google Scholar 

  • Department of Resources Energy and Tourism. Energy in Australia 2012. Canberra: DRET; 2012.

    Google Scholar 

  • Eisler MN. A modern philosopher’s stone: techno-analogy and the bacon cell. Technol Cult. 2009;50(2):345–65.

    Article  MathSciNet  Google Scholar 

  • Fthenakis V. How long does it take for photovoltaics to produce the energy used. Nat Soc Prof Eng. 2012.

    Google Scholar 

  • Fthenakis V, Frischknecht R, Raugei M, Kim H, Alsema E, Held M, de Wild-Scholten M. Methodology guidelines on life cycle assessment of photovoltaic electricity. Upton: IEA-PVPS; 2011.

    Google Scholar 

  • Government Prices Oversight Commission. Bass strait Islands electricity price inquiry. Hobart: Tasmania Government; 2008.

    Google Scholar 

  • Gupta AK, Hall CAS. A review of the past and current state of EROI data. Sustainability. 2011;3(10):1796–809.

    Article  Google Scholar 

  • Hydro Tasmania. Currie power station. Available online: http://www.hydro.com.au/system/files/documents/PS_Factsheets/Currie_Power_Station-Fact-Sheets.pdf (2008). Accessed 1 Jan 2013.

  • Hydro Tasmania. King Island renewable energy project. Available online: http://www.kingislandrenewableenergy.com.au/project-information/diesel-ups (2013). Accessed 1 Jan 2013.

  • International Energy Agency (IEA). Technology roadmap—concentrating solar power. Paris: IEA; 2010a.

    Google Scholar 

  • International Energy Agency (IEA). Key world energy statistics—2012. Paris:IEA; 2012.

    Google Scholar 

  • International Renewable Energy Agency (IRENA). Bonn: concentrating solar power; 2012.

    Google Scholar 

  • King CW. Net energy principles for understanding if energy production is an economic constraint. Webber Energy Group Symposium; 2013.

    Google Scholar 

  • Kubiszewski I, Cleveland CJ, Endres PK. Meta-analysis of net energy return for wind power systems. Renew Energy. 2010;35(1):218–25.

    Article  Google Scholar 

  • Kümmel R. The second law of economics. New York: Springer; 2011.

    Google Scholar 

  • Lenzen M. Errors in conventional and input-output—based life—cycle inventories. J Ind Ecol. 2000;4(4):127–48.

    Article  Google Scholar 

  • Lenzen M. A generalized input–output multiplier calculus for Australia. Econ Syst Res. 2001;13(1):65–92.

    Article  Google Scholar 

  • Lenzen M. Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energ Convers Manage. 2008;49(8):2178–99.

    Article  Google Scholar 

  • Ilic, M. Greening the Azores Islands: the key role of dynamic monitoring and decision systems (DYMONDS). Faculty of Technology, Policy and Management Delft University of Technology; 2011.

    Google Scholar 

  • Mujica L. Net energy analysis of hybrid concentrated solar thermal power plants in Chile: a selection methodology for optimal plant location based on sustainability attributes. 2009.

    Google Scholar 

  • Murdock D. Wind—(hydro)—diesel power systems: Flores and Graciosa Island, Azores Portugal. PB New Zealand Ltd; 2012.

    Google Scholar 

  • Murphy DJ, Hall CAS, Dale M, Cleveland C. Order from chaos: a preliminary protocol for determining the EROI of fuels. Sustainability. 2011;3(10):1888–907.

    Article  Google Scholar 

  • New Energy Externalities Developments for Sustainability (NEEDS). Final report on technical data, costs, and life cycle inventories of solar thermal power plants: project 502687; 2008.

    Google Scholar 

  • Nicholson M, Lang P. Zero carbon Australia—stationary energy plan critique. Available online: http://bravenewclimate.files.wordpress.com/2010/08/zca2020-critique-v2-1.pdf (2010). Accessed 1 Jan 2013.

  • Norgate T, Langberg D. Environmental and economic aspects of charcoal use in steelmaking. ISIJ international. 2009;49:587–595.

    Google Scholar 

  • Odeh SD, Morrison GL, Behnia M. Thermal analysis of parabolic trough solar collectors for electric power generation. In: Proceedings of ANZSES 34th annual conference, Darwin, Australia; 1996. p. 460–467.

    Google Scholar 

  • Palmer G. Household solar photovoltaics: supplier of marginal abatement, or primary source of low-emission power? Sustainability. 2013;5(4):1406–42.

    Article  MathSciNet  Google Scholar 

  • Pavlov D. Lead-acid batteries: science and technology: science and technology. Oxford: Elsevier Science; 2011.

    Google Scholar 

  • Prieto PA, Hall CAS. Spain’s photovoltaic revolution: the energy return on investment. New York: Springer; 2013.

    Book  Google Scholar 

  • Productivity commission. Productivity in electricity, gas and water: measurement and interpretation. Canberra: PC; 2012.

    Google Scholar 

  • Raugei M, Fullana-i-Palmer P, Fthenakis V. The energy return on energy investment (EROI) of photovoltaics: methodology and comparisons with fossil fuel life cycles. Energy Policy. 2012;45:576–82.

    Article  Google Scholar 

  • Shinnar R. The hydrogen economy, fuel cells, and electric cars. Technol Soc. 2003;25(4):455–76.

    Article  Google Scholar 

  • Smil V. Prime movers of globalization: the history and impact of diesel engines and gas turbines. Cambridge: MIT Press; 2010.

    Google Scholar 

  • Smil V. The iron age & coal-based coke; 2009.

    Google Scholar 

  • Tainter J. The collapse of complex societies. Cambridge: Cambridge University Press; 1990.

    Google Scholar 

  • Tainter JA, Patzek TW. Drilling down: the gulf oil debacle and our energy dilemma. New York: Springer; 2011.

    Google Scholar 

  • Trainer T. Comments on zero carbon Australia. Available online: https://socialsciences.arts.unsw.edu.au/tsw/ZCAcrit.html (2010a). Accessed 1 Jan 2013.

  • Treloar GJ. A comprehensive embodied energy analysis framework. 1998.

    Google Scholar 

  • Watt M, Passey R, Johnston W. PV in Australia 2011: prepared for the IEA cooperative programme on PV power systems. Liberty Grove: Australian PV Association; 2011.

    Google Scholar 

  • Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A. Energy intensities, energy returned on invested (EROIs), and energy payback times of electricity generating power plants. Energy. 2013.

    Google Scholar 

  • Wenham SR, Green MA, Watt ME, Corkish R. Applied photovoltaics. Sydney: UNSW Centre for Photovoltaic Engineering; 2006.

    Google Scholar 

  • Zhang M, Wang Z, Xu C, Jiang H. Embodied energy and emergy analyses of a concentrating solar power (CSP) system. Energy Policy. 2012;42:232–8.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Palmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Graham Palmer

About this chapter

Cite this chapter

Palmer, G. (2014). EROI of Solar PV. In: Energy in Australia. SpringerBriefs in Energy(). Springer, Cham. https://doi.org/10.1007/978-3-319-02940-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02940-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02939-9

  • Online ISBN: 978-3-319-02940-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics