Skip to main content

Guidance of Attention by Feature Relationships: The End of the Road for Feature Map Theories?

  • Chapter
  • First Online:
Current Trends in Eye Tracking Research

Abstract

What factors determine which stimuli of a scene will be visually selected and become available for conscious perception? Current models of attention assume that top-down control over visual selection is achieved by tuning attention to specific feature values (e.g. red, green, blue). This modulates the output of feature-specific sensory neurons (‘feature maps’) that guide attention to locations that contain the sought-after feature. Contrary to this prevalent view, it has been proposed that visual selection depends on the context. According to a new relational account, features are appraised in a context-dependent manner, so that items are selected in virtue of their relationship to the context (e.g. redder, larger, darker) rather than their absolute feature values (e.g. red vs. green). The present chapter argues that the feature map concept is untenable in view of recent evidence for the relational account, as feature map theories would have to propose an unrealistically large number of additional feature maps to account for guidance by feature relationships. Moreover, it is argued that top-down tuning to feature relationships is neurologically plausible and that the relational theory can potentially replace current feature-based theories of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansorge, U., & Heumann, M. (2003). Top-down contingencies in peripheral cueing: The roles of color and location. Journal of Experimental Psychology: Human Perception and Performance, 29, 937–948.

    Google Scholar 

  • Atiani, S., Elhilali, M., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61, 467–480.

    Article  Google Scholar 

  • Bauer, B., Jolicoeur, P., & Cowan, W. B. (1995). Visual search for colour targets that are or are not linearly separable from distractors. Vision Research, 36, 1439–1465.

    Article  Google Scholar 

  • Becker, S. I. (2010). The role of target-distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139, 247–265.

    Article  Google Scholar 

  • Becker, S. I. (2008). Can intertrial effects of features and dimensions be explained by a single theory? Journal of Experimental Psychology: Human Perception and Performance, 34, 1417–1440.

    Google Scholar 

  • Becker, S. I., & Horstmann, G. (2011). Novelty and saliency in attentional capture by unannounced motion singletons. Acta Psychologica, 136, 290–299.

    Article  Google Scholar 

  • Becker, S. I., Ansorge, U., & Horstmann, G. (2009). Can intertrial priming account for the similarity effect in visual search? Vision Research, 49, 1738–1756.

    Article  Google Scholar 

  • Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36, 1460–1476.

    Google Scholar 

  • Becker, S. I., Folk, C. L., & Remington, R. W. (2013). Attentional capture does not depend 2 feature similarity, but on target-nontarget relations. Psychological Science. 24, 634–647.

    Google Scholar 

  • Becker, S.I., Harris, A.M., Venini, D., & Retell, J.D. (in press). Visual search for colour and shape: When is the gaze guided by feature relationships, when by feature values? Journal of Experimental Psychology: Human Perception and Performance.

    Google Scholar 

  • Conway, B. R. (2001). Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V1). The Journal of Neuroscience, 21, 2768–2783.

    Google Scholar 

  • Conway, B. R., & Tsao, D. Y. (2009). Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. PNAS, 106, 18034–18039.

    Article  Google Scholar 

  • Conway, B. R., Hubel, D. H., & Livingstone, M. S. (2002). Color contrast in macaque V1. Cerebral Cortex, 12, 915–925.

    Article  Google Scholar 

  • David, S. V., Hayden, B. Y., Mazer, J. A., & Gallant, J. L. (2008). Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron, 59, 509–521.

    Article  Google Scholar 

  • De Valois, R. L., Cottaris, N. P., Elfar, S., Mahon, L. E., & Wilson, J. A. (2000). Some transformations of color information from lateral geniculate nucleus to striate cortex, PNAS, 97, 4997–5002.

    Article  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.

    Article  Google Scholar 

  • D’Zmura, M. (1991). Color in visual search. Vision Research, 31, 951–966.

    Article  Google Scholar 

  • Eimer, M., Kiss, M., Press, C., & Sauter, D. (2009). The roles of feature-specific task set and bottom-up salience in attentional capture: An ERP study. Journal of Experimental Psychology: Human Perception and Performance, 35, 1316–1328.

    Google Scholar 

  • Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858.

    Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.

    Google Scholar 

  • Foster, D. H. (2003). Does color constancy exist? TICS, 7, 439–443.

    Google Scholar 

  • Gouras, P. (1974). Opponent-color cells in different layers of foveal striate cortex. Journal of Physiology, 238, 583–602.

    Google Scholar 

  • Harris, A.M., Remington, R.W., & Becker, S.I. (2013). Feature specificity in attentional capture by size and colour. Journal of Vision, 13:12, 1-15.

    Google Scholar 

  • Hodsoll, J. P., & Humphreys, G. W. (2005). The effect of target foreknowledge on visual search for categorically separable orientation targets. Vision Research, 45, 2346–2351.

    Article  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1969). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195, 215–243.

    Google Scholar 

  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506.

    Article  Google Scholar 

  • Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751–761.

    Article  Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in visual selective attention: Towards the underlying neural circuitry. Human Neurobiology, 4, 219–227.

    Google Scholar 

  • Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates winner-take-all competition among visual filters. Nature Neuroscience, 2, 375–381.

    Article  Google Scholar 

  • Luck, S. J., Chelazzi, L., Hillyard, S. A., Desimone, R. (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.

    Google Scholar 

  • Ludwig, C. J. H., & Gilchrist, I. D. (2002). Stimulus-driven and goal-driven control over visual selection. Journal of Experimental Psychology: Human Perception and Performance, 28, 902–912.

    Google Scholar 

  • Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751.

    Article  Google Scholar 

  • Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. TICS, 29(6):317–322.

    Google Scholar 

  • Motter, B. C. (1994). Neural correlates of attentive selection for color and luminance in extrastriate area V4. The Journal of Neuroscience, 14, 2178–2189.

    Google Scholar 

  • Mozer, M. C., & Baldwin, D. S. (2008). Experience-guided search: A theory of attentional control. In J. Platt, D. Koller, & Y. Singer (Eds.), Advances in Neural Information Processing Systems 20 (pp. 1033–1040). Cambridge: MIT Press.

    Google Scholar 

  • Navalpakkam, V., & Itti, L. (2006). An integrated model of top-down and bottom-up attention for optimizing detection speed. Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2049–2056.

    Google Scholar 

  • Navalpakkam, V., & Itti, L. (2007). Search goals tunes visual features optimally. Neuron, 53, 605–617.

    Article  Google Scholar 

  • Nakayama, K., & Martini, P. (2011). Situating visual search. Vision Research, 51, 1526–1537.

    Article  Google Scholar 

  • Posner, M. I. (1980) Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  Google Scholar 

  • Scolari, M., & Serences, J. T. (2010). Basing perceptual decisions on the most informative sensory neurons. Journal of Neurophysiology, 104, 2266–2273.

    Article  Google Scholar 

  • Spitzer, H., Desimone, R., & Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance. Science, 240, 338–340.

    Article  Google Scholar 

  • Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799–806.

    Google Scholar 

  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 97–135.

    Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  Google Scholar 

  • Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459–478.

    Google Scholar 

  • Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.

    Article  Google Scholar 

  • Wolfe, J. M. (1998). Visual search. In: H. Pashler (Ed.), Attention (pp. 30–73). London: University College London Press.

    Google Scholar 

  • Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neurosience, 5, 495–501.

    Article  Google Scholar 

  • Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 19, 676–681.

    Google Scholar 

  • Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Attention & performance, XVIII (pp. 73–103). Cambridge: MIT Press.

    Google Scholar 

Download references

Acknowledgements

This research was supported by an ARC postdoctoral fellowship awarded to Stefanie I. Becker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie I. Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Becker, S. (2014). Guidance of Attention by Feature Relationships: The End of the Road for Feature Map Theories?. In: Horsley, M., Eliot, M., Knight, B., Reilly, R. (eds) Current Trends in Eye Tracking Research. Springer, Cham. https://doi.org/10.1007/978-3-319-02868-2_3

Download citation

Publish with us

Policies and ethics