Skip to main content

Block and Transform Domain Algorithms

  • Chapter
  • First Online:
Fundamentals of Adaptive Signal Processing

Part of the book series: Signals and Communication Technology ((SCT))

  • 3290 Accesses

Abstract

In this chapter structures and algorithms for the implementation of adaptive filters (AF) with the purpose of improving the convergence speed and reducing the computational cost are presented. In particular, they are classified as block and online methods, operating in the time domain, in the transformed domain (typically the frequency domain), and in frequency subbands mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some sections of this chapter, for reasons of notation clarified in the following, the length of the filter is referred to as M F . The reader will note that generally the length of the filter is denoted by M, implying M F  = M.

  2. 2.

    The symbols x ⌈M⌉ and x ⌊L⌋ denote, respectively, the first M and the last L samples of the vector x.

  3. 3.

    In this section the filter length is referred to as M F .

  4. 4.

    The roots of the polynomial (1 − z −M) are uniformly placed around the unit circles exactly like the frequency-bins of a M points DFT.

References

  1. Clark GA, Mitra SK, Parker SR (1981) Block implementation of adaptive digital filters. IEEE Trans Circuits Syst CAS-28(6):584–592

    Article  Google Scholar 

  2. Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  3. Feuer A (1985) Performance analysis of the block least mean square algorithm. IEEE Trans Circuits Syst CAS-32(9):960–963

    Article  MathSciNet  Google Scholar 

  4. Dentino M, McCool J, Widrow B (1978) Adaptive filtering in the frequency domain. Proc IEEE 66:1658–1660

    Article  Google Scholar 

  5. Bershad NJ, Feintuch PD (1979) Analysis of the frequency domain adaptive fiter. Proc IEEE 67:1658–1659

    Article  Google Scholar 

  6. Ferrara ER (1980) Fast implementation of LMS adaptive filters. IEEE Trans Acoust Speech Signal Process ASSP-28:474–475

    Article  Google Scholar 

  7. Clark GA, Parker SR, Mitra SK (1983) A unified approach to time- and frequency-domain realization of fir adaptive digital filters. IEEE Trans Acoust Speech Signal Process ASSP-31:1073–1083

    Article  Google Scholar 

  8. Narayan SS, Peterson AM (1981) Frequency domain least-mean square algorithm. Proc IEEE 69(1):124–126

    Article  Google Scholar 

  9. Lee JC, Un CK (1989) Performance analysis of frequency-domain block LMS adaptive digital filters. IEEE Trans Circuits Syst 36:173–189

    Article  MathSciNet  Google Scholar 

  10. Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  11. Mansour D, Gray AH (1982) Unconstrained frequency-domain adaptive filter. IEEE Trans Acoust Speech Signal Process ASSP-30(5):726–734

    Article  Google Scholar 

  12. Shynk JJ (1992) Frequency domain and multirate adaptive filtering. IEEE Signal Process Mag 9:14–37

    Article  Google Scholar 

  13. Bendel Y, Burshtein D, Shalvi O, Weinstein E (2001) Delayless frequency domain acoustic echo cancellation. IEEE Trans Speech Audio Process 9(5):589–597

    Article  Google Scholar 

  14. Farhang-Boroujeny B, Gazor S (1994) Generalized sliding FFT and its application to implementation of block LMS adaptive filters. IEEE Trans Signal Process SP-42:532–538

    Article  Google Scholar 

  15. Benesty J, Morgan DR (2000) Frequency-domain adaptive filtering revisited, generalization to the multi-channel case, and application to acoustic echo cancellation. In: Proceedings of the IEEE international conference on acoustics speech, and signal proceesing (ICASSP), vol 2, 5–9 June, pp II789–II792

    Google Scholar 

  16. Moulines E, Amrane OA, Grenier Y (1995) The generalized multidelay adaptive filter: structure and convergence analysis. IEEE Trans Signal Process 43:14–28

    Article  Google Scholar 

  17. McLaughlin HJ (1996) System and method for an efficiently constrained frequency-domain adaptive filter. US Patent 5 526 426

    Google Scholar 

  18. Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

    Article  Google Scholar 

  19. Farhang-Boroujeny B (1996) Analysis and efficient implementation of partitioned block LMS adaptive filters. IEEE Trans Signal Process SP-44(11):2865–2868

    Article  Google Scholar 

  20. Sommen PCW, Gerwen PJ, Kotmans HJ, Janssen AJEM (1987) Convergence analysis of a frequency-domain adaptive filter with exponential power averaging and generalized window function. IEEE Trans Circuits Syst CAS-34(7):788–798

    Article  Google Scholar 

  21. Derkx RMM, Egelmeers GPM, Sommen PCW (2002) New constraining method for partitioned block frequency-domain adaptive filters. IEEE Trans Signal Process SP-50(9):2177–2186

    Article  Google Scholar 

  22. Golub GH, Van Loan CF (1989) Matrix computation. John Hopkins University Press, Baltimore. ISBN 0-80183772-3

    Google Scholar 

  23. Gray RM (2006) Toeplitz and circulant matrices: a review. Found Trends Commun Inf Theory 2(3):155–239

    Article  Google Scholar 

  24. Farhang-Boroujeny B, Chan KS (2000) Analysis of the frequency-domain block LMS algorithm. IEEE Trans Signal Process SP-48(8):2332–2342

    Article  Google Scholar 

  25. Chan KS, Farhang-Boroujeny B (2001) Analysis of the partitioned frequency-domain block LMS (PFBLMS) algorithm. IEEE Trans Signal Process SP-49(9):1860–1864

    Article  Google Scholar 

  26. Lee JC, Un CK (1986) Performance of transform-domain LMS adaptive algorithms. IEEE Trans Acoust Speech Signal Process ASSP-34:499–510

    Article  Google Scholar 

  27. Asharif MR, Takebayashi T, Chugo T, Murano K (1986) Frequency domain noise canceler: frequency-bin adaptive filtering (FBAF). In: Proceedings ICASSP, pp 41.22.1–41.22.4

    Google Scholar 

  28. Sommen PCW (1989) Partitioned frequency-domain adaptive filters. In: Proceedings of 23rd annual asilomar conference on signals, systems, and computers, Pacific Grove, CA, pp 677–681

    Google Scholar 

  29. Soo JS, Pang KK (1990) Multidelay block frequency domain adaptive filter. IEEE Trans Acoust Speech Signal Process 38:373–376

    Article  Google Scholar 

  30. Sommen PCW (1992) Adaptive filtering methods. PhD dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands

    Google Scholar 

  31. Yon CH, Un CK (1994) Fast multidelay block transform-domain adaptive flters based on a two-dimensional optimum block algorithm. IEEE Trans Circuits Syst II Analog Digit Signal Process 41:337–345

    Article  MATH  Google Scholar 

  32. Asharif MR, Amano F (1994) Acoustic echo-canceler using the FBAF algorithm. Trans Commun 42:3090–3094

    Article  Google Scholar 

  33. Narayan SS, Peterson AM, Marasimha MJ (1983) Transform domain lms algorithm. IEEE Trans Acoust Speech Signal Process ASSP-31(3):609–615

    Article  Google Scholar 

  34. Beaufays F (1995) Transform domain adaptive filters: an analytical approach. IEEE Trans Signal Process SP-43(3):422–431

    Article  Google Scholar 

  35. Farhan-Boroujeny B, Lee Y, Ko CC (1996) Sliding transforms for efficient implementation of transform domain adaptive filters. Elsevier, Signal Process 52: 83–96

    Google Scholar 

  36. Marshall DF, Jenkins WK, Murphy JJ (1989) The use of orthogonal transforms for improving performance of adaptive filters. IEEE Trans Circuits Syst 36(4):474–484

    Article  MathSciNet  Google Scholar 

  37. Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput C-23(1):90–93

    Article  MathSciNet  Google Scholar 

  38. Feig E, Winograd S (1992) Fast algorithms for the discrete cosine transform. IEEE Trans Signal Process 40(9):2174–2193

    Article  MATH  Google Scholar 

  39. Martucci SA (1994) Symmetric convolution and the discrete sine and cosine transforms. IEEE Trans Signal Process SP-42(5):1038–1051

    Article  Google Scholar 

  40. Bruun G (1978) z-Transform DFT filters and FFTs. IEEE Trans Acoust Speech Signal Process 26(1):56–63

    Article  Google Scholar 

  41. Vetterli M (1987) A theory of multirate filter banks. IEEE Trans Acoust Speech Signal Process ASSP-35:356–372

    Article  Google Scholar 

  42. Johnston J (1980) A filter family designed for use in quadrature mirror filter banks. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, Denver, CO

    Google Scholar 

  43. Crochiere RE, Rabiner LR (1983) Multirate signal processing. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  44. Fliege NJ (1994) Multirate digital signal processing. Wiley, New York

    Google Scholar 

  45. Vaidyanathan PP (1993) Multirate systems and filterbanks. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  46. Koilpillai RD, Vaidyanathan PP (1990) A new approach to the design of FIR perfect reconstruction QMF banks. IEEE international symposium on circuits and systems-1990, vol 1, 1–3 May 1990, pp 125–128

    Google Scholar 

  47. Nayebi K, Barnwell T, Smith M (1992) Time domain filter bank analysis: a new design theory. IEEE Trans Signal Process 40(6):1412–1429

    Article  MATH  Google Scholar 

  48. Nguyen TQ (1994) Near perfect reconstruction pseudo QMF banks. IEEE Trans Signal Process 42(1):65–76

    Article  Google Scholar 

  49. Gilloire A, Vetterli M (1992) Adaptive filtering in subbands with critical sampling: analysis, experiments, and application to acoustic echo cancellation. IEEE Trans Signal Process 40:1862–1875

    Article  MATH  Google Scholar 

  50. De Léon PL II, Etter DM (1995) Experimental results with increased bandwidth analysis filters in oversampled, subband echo canceler. IEEE Trans Signal Process Lett 1:1–2

    Article  Google Scholar 

  51. Croisier A, Esteban D, Galand C (1976) Perfect channel splitting by use of interpolation/decimation/tree decomposition techniques. Conference on information sciences and systems

    Google Scholar 

  52. Kellermann W (1988) Analysis and design of multirate systems for cancellation of acoustic echoes. In: Proceedings IEEE international conference on acoustics, speech, and signal processing, New York, NY, pp 2570–2573

    Google Scholar 

  53. Pradhan SS, Reddy VU (1999) A new approach to subband adaptive filtering. IEEE Trans Signal Process 47(3):65–76

    Google Scholar 

  54. Gilloire A (1987) Experiments with subband acoustic echo cancellation for teleconferencing. In: Proceedings IEEE ICASSP, Dallas, TX, pp 2141–2144

    Google Scholar 

  55. Yusukawa H, Shimada S, Furakawa I (1987) Acoustic echo with high speech quality. In: Proceedings IEEE ICASSP, Dallas, TX, pp 2125–2128

    Google Scholar 

  56. Petraglia MR, Alves RG, Diniz PSR (2000) New structures for adaptive filtering in subbands with critical sampling. IEEE Trans Signal Process 48(12):3316–3327

    Article  MathSciNet  Google Scholar 

  57. Petraglia MR, Batalheiro PB (2004) Filtre bank design for a subband adaptive filtering structure with critical sampling. IEEE Trans Signal Process 51(6):1194–1202

    Google Scholar 

  58. Kim SG, Yoo CD, Nguyen TQ (2008) Alias-free subband adaptive filtering with critical sampling. IEEE Trans Signal Process 56(5):1894–1904

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uncini, A. (2015). Block and Transform Domain Algorithms. In: Fundamentals of Adaptive Signal Processing. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-02807-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02807-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02806-4

  • Online ISBN: 978-3-319-02807-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics