Skip to main content

Hazards, Risks, and Low Hazard Development Paths of Synthetic Biology

  • Chapter
  • First Online:
Synthetic Biology

Part of the book series: Risk Engineering ((RISK))

Abstract

In early stages of research and innovation a precise investigation of technological risks, as well as the analysis of particular beneficial features, is confronted with a lack of knowledge about exact process or product qualities, application contexts and intentions of users. Therefore, an appropriate identification of anticipated risks, accompanied by the achievements of synthetic biology, should rather focus on basic properties and functionalities of the objects of synthetic biology which will be exploited in future products and processes. Accordingly, the aim of this chapter is to determine major risk factors of synthetic biology creations with a focus on the technology itself. In consideration of the demand to cover these risks by appropriate counter measures, the question is raised, whether there are suitable strategies to achieve a high level of safety. In this regard, the discussion will be extended to feasible alternatives, e.g. by introducing trophic and semantic isolation strategies for synthetic organisms as an approach to overcome major drawbacks of classical biosafety mechanisms. Finally, functional reduction, a concept which is already aspiring to achieve efficient biosynthesis, is suggested as a measure for the reduction of risk-related functionalities. This strategy is worth further investigation if the full potential of synthetic biology is to be obtained in a safe and sustainable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Unlimited consequences are defined as ramifications of causes and effects with a high range in space and time, ultimately global and irreversible.

  2. 2.

    The concept of risk has different definitions. In the well-known current understanding risk originates from an adverse incident and its occurrence probability. This chapter refers to a definition of risk in an (eco)toxicological sense. Here, risk is defined as a function of hazard on the one side, and exposure on the other. Therefore, a hazard, caused by specific qualities and functionalities, is defined as the potential of an agent (entity or noxa) to cause an adverse effect on a receptor (e.g. organisms, systems, (sub)populations) (IPCS 2004). Exposure is defined as the concentration or amount of a particular agent that reaches a target organism, a system, or a (sub)population in a specific frequency for a defined duration (IPCS 2004). Special functionalities and qualities of an agent, as the ability for self-replication, persistence in organisms and the environment (including bio-accumulation), mobility in environmental media and within organisms and—as an external driver—mass production, are therefore leading to a high probability of exposure. The notion of sensitivity (and bioavailability of an agent) of the exposed receptor is additionally important, because one and the same agent may lead to quite different effects in systems depending on the systems’ states (developmental phase, trajectory, intensity, energy content etc.).

  3. 3.

    Cf. Commission Decision, Annex Nr. 3.2.5 of Directive 90/219/EEC.

  4. 4.

    The societal position regarding genetic engineering (GE) obviously reflects this policy, when more research into microorganisms and into medicines/vaccines is massively supported by the European population but applications concerning farm animals, food and plants have the weakest support (cf. Eurobarometer 1993).

  5. 5.

    Cf. OpenWetWare, an information platform managed by the BioBricks Foundation: “All in all, biologically speaking, these sets of problems boil up to two things: horizontal gene transfer and excessive proliferation, although emergent properties of synthetic systems could make these problems worse.” And: “Other bacteria that seem harmless could cause harm too if released in the environment because of a potential negative consequence of horizontal gene transfer or excessive proliferation which could disrupt the ecosystem.” http://openwetware.org/wiki/How_safe_is_safe_enough:_towards_best_pratices_of_synthetic_biology#iv._Physical_harms, accessed: July, 03 2013.

  6. 6.

    In this context an additional functionality which cannot be further discussed due to restrictions of space is mobility which increases inner and outer exposure, realized either passively by transport or actively by an entities own capacity to change its location.

  7. 7.

    Cf.: Guidance notes on the objective, elements, general principles and methodology of the environmental risk assessment referred to in annex II to directive 2001/18/EC Commission Decision, 24 July 2002, (2002/623/EC).

  8. 8.

    Self-replication of living organisms depends on genetic information. But for less complex entities other forms of molecular self-organization are possible, as for example revealed by self-replicating peptides (Lee et al. 1996).

  9. 9.

    E.g. the impact of prions (Norrby 2011), though they are also proliferative in a broader sense.

  10. 10.

    E.g. tipping point characteristics of large-scale components of the Earth System, cf. Lenton et al. (2008).

  11. 11.

    Cf. Wright et al. (2013, 1223): “Biology can achieve a lot in a contained environment; however, physical containment alone offers no guarantees. For example, no matter how ingenious a protective device or material may be for a GMM field application, an inventive way will eventually be found by an operator to compromise it. Failure in this case is a matter of when, not if. Although some form of physical containment is obviously prudent, inbuilt biological mechanisms remain crucial to biosafety.”

  12. 12.

    These “classic” auxotroph-strategies are based on a deletion or at least a deactivation of a gene whose gene product is essential for survival of the GMO (Wright et al. 2013).

  13. 13.

    Cf. Marlière (2009).

  14. 14.

    Trophic containment basically resembles the auxotrophic approaches of current safety strategies.

  15. 15.

    Cf. Marlière (2009).

  16. 16.

    The term xeno-nucleic acid (XNA) was first proposed by Herdewijn and Marlière for synthetic genetic polymers (Herdewijn and Marlière 2009).

  17. 17.

    E.g. unnatural nucleobases in quadruplet codons.

  18. 18.

    As already known for persistent chemicals (e.g. CFC’s) or more visually apparent as plastic waste in the oceans.

  19. 19.

    See also Heinemann and Panke (2006, 2791): “Finally, there are strong ongoing efforts towards minimal (bacterial) systems and it can be expected that such systems—owing to their reduced complexity—have a much smaller number of cross-reactions, so that implementation of novel elements stands a much better chance of remaining functionally isolated.”

  20. 20.

    Cf. Jewett and Forster (2010).

  21. 21.

    Ibid, (698): “Thus, if additional nutrients were supplied in the extracellular medium (and perhaps their uptake aided by encoding extra transmembrane transporters) it may be feasible to delete many more genes. This could take us down to a truly minimal, protein-coding cell: one sufficient for replication but not for metabolism of most small molecules.”

  22. 22.

    Cf. Forster and Church (2006, 1): “Safety concerns for synthetic life will be alleviated by extreme dependence on elaborate laboratory reagents and conditions for viability.”

  23. 23.

    Cf. e.g. Zawada et al. (2011).

  24. 24.

    Cf. Xu and Anchordoquy (2011, 1): “While viruses offer greater efficiency of gene delivery, it is generally agreed that synthetic vectors would be preferable due to safety concerns, and viral vectors may be more suited for ex vivo applications.”

  25. 25.

    A dehydrogenase to regenerate the required cofactor NADH from glucose or formic acid (Robins et al. 2013).

  26. 26.

    Cf. the NEST-Report of the European Commission (2005, 5): “In essence, synthetic biology will enable the design of ‘biological systems’ in a rational and systematic way.”

  27. 27.

    Cf. Forster and Church (2007, 5): “And engineering flexibility is much greater in vitro, unshackled from cellular viability, complexity, and walls.”

  28. 28.

    Interfering background reactions as a cause for perturbed functions or diminished product recovery rates can occur in cellular extracts as well. However, extracts can be improved by mutation and selection of the required strains (Knapp et al. 2007).

  29. 29.

    Hockenberry and Jewett (2012, 257) also mention the benefits for standardized elements in synthetic biology: “While the search for biological ‘parts’ has proven fruitful for in vivo synthetic biologists, many of these parts are still highly context dependent. In cell-free systems, these parts exist in a context outside of cellular adaptation and evolution and the results are therefore expected to be more tunable and reproducible.”

References

  • Anders, G. (1958). Die Antiquiertheit des Menschen. Über die Seele im Zeitalter der zweiten industriellen revolution. München: Beck.

    Google Scholar 

  • Anderson, J. C., Clarke, E. J., Arkin, A. P., & Voigt, C. A. (2006). Environmentally controlled invasion of cancer cells by engineered bacteria. Journal of Molecular Biology, 355(4), 619–627. http://dx.doi.org/10.1016/j.jmb.2005.10.076

  • Andow, D. A., & Zwahlen, C. (2006). Assessing environmental risks of transgenic plants. Ecology Letters, 9(2), 196–214. doi:10.1111/j.1461-0248.2005.00846.x.

    Article  Google Scholar 

  • Benner, S. A., Yang, Z., & Chen, F. (2011). Synthetic biology, tinkering biology, and artificial biology. What are we learning? Comptes Rendus Chimie, 14(4), 372–387.

    Article  Google Scholar 

  • Bergelson, J., Purrington, C. B., & Wichmann, G. (1998). Promiscuity in transgenic plants. Nature, 395(6697), 25. doi:10.1038/25626.

    Article  Google Scholar 

  • Breckling, B., Middelhoff, U., Borgmann, P., Menzel, G., Brauner, R., Born, A., et al. (2003). Biologische Risikoforschung zu gentechnisch veränderten Pflanzen in der Landwirtschaft: Das Beispiel Raps in Norddeutschland. In H. Reuter, B. Beckling, & A. Mitwollen (Eds.), Gene, Bits und Ökosysteme (pp. 19–45). Frankfurt am Main: P. Lang (GfÖ Arbeitskreis Theorie in der Ökologie).

    Google Scholar 

  • Breckling, B., & Schmidt, G. (2015). Synthetic biology and genetic engineering: Parallels in risk assessment. In B. Giese, C. Pade, H. Wigger, A. von Gleich (Eds.), Synthetic biology: Character and impact (pp. 197–212). New York: Springer.

    Google Scholar 

  • Cambray, G., Mutalik, V. K., & Arkin, A. P. (2011). Toward rational design of bacterial genomes. Current Opinion in Microbiology, 14(5), 624–630. doi:10.1016/j.mib.2011.08.001.

    Article  Google Scholar 

  • Chen, Y., Chen, H., & Shi, J. (2013). In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Advanced Materials, 25(23), 3144–3176. doi:10.1002/adma.201205292.

    Article  Google Scholar 

  • Church, G., & Regis, E. (2012). Regenesis how synthetic biology will reinvent nature and ourselves. New York: Basic Books.

    Google Scholar 

  • Collingridge, D. (1980). The social control of technology. New York: St. Martin’s Press.

    Google Scholar 

  • Csorgo, B., Feher, T., Timar, E., Blattner, F. R., & Posfai, G. (2012). Low-mutation-rate, reduced-genome Escherichia coli: An improved host for faithful maintenance of engineered genetic constructs. Microbial Cell Factories 11(11), doi:10.1186/1475-2859-11-11.

  • Dana, G. V., Kuiken, T., Rejeski, D., & Snow, A. A. (2012). Four steps to avoid a synthetic-biology disaster. Nature, 483(7387), 29.

    Article  Google Scholar 

  • de Vries, J., & Wackernagel, W. (2002). Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2094–2099. doi:10.1073/pnas.042263399.

    Article  Google Scholar 

  • Doktycz, M. J., & Simpson, M. L. (2007). Nano-enabled synthetic biology. Molecular Systems Biology, 3, 125. doi:10.1038/msb4100165.

    Article  Google Scholar 

  • Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. The Journal of Biological Chemistry, 403(6767), 335–338. doi:10.1038/35002125.

    Google Scholar 

  • Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449–453. doi:10.1038/nature04342.

    Article  Google Scholar 

  • Eurobarometer. (1993). Biotechnology and genetic engineering, what Europeans think about it in 1993. Brussels: EC.

    Google Scholar 

  • European Commission. (2005). Synthetic biology—applying engineering to biology. Brussels: European Commission.

    Google Scholar 

  • Folcher, M., & Fussenegger, M. (2012). Synthetic biology advancing clinical applications. Current Opinion in Chemical Biology, 16(3–4), 345–354. doi:10.1016/j.cbpa.2012.06.008.

    Article  Google Scholar 

  • Forster, A. C., & Church, G. M. (2006). Towards synthesis of a minimal cell. Molecular Systems Biology, 2, 45. doi:10.1038/msb4100090.

    Article  Google Scholar 

  • Forster, A. C., & Church, G. M. (2007). Synthetic biology projects in vitro. Genome Research, 17(1), 1–6.

    Article  Google Scholar 

  • Harris, D. C. & Jewett, M. C. (2012). Cell-free biology: Exploiting the interface between synthetic biology and synthetic chemistry. Current Opinion in Biotechnology, 23, 1–7. doi:10.1016/j.copbio.2012.02.002.

  • Heinemann, M., & Panke, S. (2006). Synthetic biology—putting engineering into biology. Bioinformatics, 22(22), 2790–2799. doi:10.1093/bioinformatics/btl469.

    Article  Google Scholar 

  • Henry, A. A. & Romesberg, F. E. (2003). Beyond A, C, G and T: Augmenting nature’s alphabet. Current Opinion in Chemical Biology, 7(6), 727–733.

    Google Scholar 

  • Herdewijn, P., & Marlière, P. (2009). Toward safe genetically modified organisms through the chemical diversification of nucleic acids. Chemistry and Biodiversity, 6(6), 791–808. doi:10.1002/cbdv.200900083.

    Article  Google Scholar 

  • Hilbeck, A., McMillan, J. M., Meier, M., Humbel, A., Schläpfer-Miller, J., & Trtikova, M. (2012). A controversy re-visited: Is the coccinellid Adalia bipunctata adversely affected by Bt toxins? Environmental Sciences Europe, 24(1), 10. doi:10.1186/2190-4715-24-10.

    Article  Google Scholar 

  • Hockenberry, A. J., & Jewett, M. C. (2012). Synthetic in vitro circuits. Current Opinion in Chemical Biology, 16(3–4), 253–259. doi:10.1016/j.cbpa.2012.05.179.

    Article  Google Scholar 

  • Hodgman, C. E., & Jewett, M. C. (2012). Cell-free synthetic biology: Thinking outside the cell. Metabolic Engineering, 14(3), 261–269. doi:10.1016/j.ymben.2011.09.002.

    Article  Google Scholar 

  • Hoesl, M. G. & Budisa, N. (2011). In vivo incorporation of multiple noncanonical amino acids into proteins. Angewandte Chemie, 50(13), 2896–2902. doi:10.1002/anie.201005680 (International ed. in English).

  • Hold, C. & Panke, S. (2009). Towards the engineering of in vitro systems. Journal of the Royal Society, Interface/The Royal Society, 6 Suppl 4, S507–S521. doi:10.1098/rsif.2009.0110.focus.

  • Holmes, M. T., Ingham, E. R., Doyle, J. D., & Hendricks, C. W. (1999). Effects of Klebsiella planticola SDF20 on soil biota and wheat growth in sandy soil. Applied Soil Ecology, 11, 67–78.

    Article  Google Scholar 

  • IPCS (2004). IPCS risk assessment terminology. Harmonization Project Document No. 1 (World Health Organization (WHO), Ed.). Geneva: WHO Document Production Services.

    Google Scholar 

  • Isaacs, F. J., Dwyer, D. J., & Collins, J. J. (2006). RNA synthetic biology. Nature Biotechnology, 24(5), 545–554.

    Article  Google Scholar 

  • Jewett, M. C., & Forster, A. C. (2010). Update on designing and building minimal cells. Current Opinion in Biotechnology, 21(5), 697–703. doi:10.1016/j.copbio.2010.06.008.

    Article  Google Scholar 

  • Jewett, M. C., Calhoun, K. a., Voloshin, A., Wuu, J. J. & Swartz, J. R. (2008). An integrated cell-free metabolic platform for protein production and synthetic biology. Molecular Systems Biology, 4(220), 220. doi:10.1038/msb.2008.57.

  • Jonas, H. (1985). Laßt uns einen Menschen klonieren: Von der Eugenik zur Gentechnologie. In Technik, Medizin und Ethik: zur Praxis d. Prinzips Verantwortung (pp. 162–203). Frankfurt am Main: Insel.

    Google Scholar 

  • Knapp, K. G., Goerke, A. R., & Swartz, J. R. (2007). Cell-free synthesis of proteins that require disulfide bonds using glucose as an energy source. Biotechnology and Bioengineering, 97(4), 901–908. doi:10.1002/bit.21296.

    Article  Google Scholar 

  • Kemmer, C., Fluri, D. A., Witschi, U., Passeraub, A., Gutzwiller, A., & Fussenegger, M. (2011). A designer network coordinating bovine artificial insemination by ovulation-triggered release of implanted sperms. Journal of Controlled Release, 150(1), 23–29. doi:10.1016/j.jconrel.2010.11.016.

    Article  Google Scholar 

  • Kim, J., & Winfree, E. (2011). Synthetic in vitro transcriptional oscillators. Molecular Systems Biology, 7(465), 465. doi:10.1038/msb.2010.119.

    Google Scholar 

  • Kitney, R., & Freemont, P. (2012). Synthetic biology—the state of play. FEBS Letters, 586(15), 2029–2036. doi:10.1016/j.febslet.2012.06.002.

    Article  Google Scholar 

  • Kümmerer, K. (2010). Pharmaceuticals in the environment. Annual Review of Environment and Resources, 35(1), 57–75. doi:10.1146/annurev-environ-052809-161223.

  • Lacroix, R., McKemey, A. R., Raduan, N., Kwee Wee, L., Hong Ming, W., Guat Ney, T., et al. (2012). Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS ONE, 7(8), e42771. doi:10.1371/journal.pone.0042771.

    Article  Google Scholar 

  • Leder, P., & Nirenberg, M. W. (1964). RNA codewords and protein synthesis, III. On the nucleotide sequence of a cysteine and a leucine RNA codeword. PNAS, 52, 1521–1529.

    Article  Google Scholar 

  • Ledford, H. (2010). Life hackers. Nature, 467, 650–652.

    Article  Google Scholar 

  • Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K., & Ghadri, M. R. (1996). A self-replicating peptide. Nature, 382(6591), 525–528. doi:10.1038/382525a0.

    Article  Google Scholar 

  • Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., et al. (2008). Inaugural article: Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences, 105(6), 1786–1793.

    Article  MATH  Google Scholar 

  • Lorenz, M. G., & Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews, 58(3), 563–602.

    Google Scholar 

  • Lu, T. K., Khalil, A. S., & Collins, J. J. (2009). Next-generation synthetic gene networks. Nature Biotechnology, 27(12), 1139–1150. doi:10.1038/nbt.1591.

    Article  Google Scholar 

  • Lynch, S. R., Liu, H., Gao, J., & Kool, E. T. (2006). Toward a designed, functioning genetic system with expanded-size base Pairs: Solution structure of the 8-base xDNA double helix. Journal of the American Chemical Society, 128(45), 14704–14711. doi:10.1021/ja065606n.

    Article  Google Scholar 

  • Marliere, P. (2009). The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Systems and Synthetic Biology, 3, 77–84.

    Article  Google Scholar 

  • McMinn, D. L., Ogawa, A. K., Wu, Y., Liu, J., Schultz, P. G., & Romesberg, F. E. (1999). Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. Journal of the American Chemical Society, 121(49), 11585–11586. S0002-7863(99)02515-9.

    Article  Google Scholar 

  • Moe-Behrens, G. H., Davis, R., & Haynes, K. A. (2013). Preparing synthetic biology for the world. Front Microbiol, 4, 5. doi:10.3389/fmicb.2013.00005.

  • Moran, S., Ren, R. X. F., & Kool, E. T. (1997). A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity. Proceedings of the National Academy of Sciences of the United States of America, 94(20), 10506–10511.

    Article  Google Scholar 

  • Neumann, H., Wang, K., Davis, L., Garcia-Alai, M., & Chin, J. W. (2010). Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature, 464(7287), 441–444. doi:10.1038/nature08817.

    Article  Google Scholar 

  • Nielsen, P. E., & Egholm, M. (1999). An introduction to peptide nucleic acid. Current Issues in Molecular Biology, 1(1–2), 89–104.

    Google Scholar 

  • Nirenberg, M. W., & Matthaei, J. H. (1961). The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences, 47(10), 1588–1602.

    Article  Google Scholar 

  • Norrby, E. (2011). Prions and protein-folding diseases. Journal of Internal Medicine, 270(1), 1–14. doi:10.1111/j.1365-2796.2011.02387.x.

    Article  Google Scholar 

  • Nourian, Z., Roelofsen, W., & Danelon, C. (2012). Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angewandte Chemie, 51(13), 3114–3118. doi:10.1002/anie.201107123. (International ed. in English).

    Article  Google Scholar 

  • Park, N., Um, S. O., Funabashi, H., Xu, J., & Luo, D. (2009). A cell-free protein-producing gel. Nature Materials, 8, 432–437. doi:10.1038/nmat2419.

    Article  Google Scholar 

  • Pilson, D., Snow, A., Rieseberg, L., & Alexander, H. (2002). Fitness and population effects of gene flow from transgenic sun flower to wild Helianthus annuus. In A. Snow, C. Mallory-Smith, N. Ellstrand, J. Holt, & H. Quemada (Eds.), Ecological and Agronomic Consequences of Gene Flow from Transgenic Crops to Wild Relatives. The University Plaza Hotel and Conference Center, Ohio State University Columbus, OH, 2002 (pp. 58–70).

    Google Scholar 

  • Pinheiro, V. B., Taylor, A. I., Cozens, C., Abramov, M., Renders, M., Zhang, S., et al. (2012). Synthetic genetic polymers capable of heredity and evolution. Science, 336(6079), 341–344. doi:10.1126/science.1217622.

    Article  Google Scholar 

  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., et al. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Critical Reviews in Therapeutic Drug Carrier Systems, 26(6), 523–580.

    Article  Google Scholar 

  • Qin, S., Lin, H., & Jiang, P. (2012). Advances in genetic engineering of marine algae. Biotechnol Advances, 30(6), 1602–1613. doi:10.1016/j.biotechadv.2012.05.004.

    Article  Google Scholar 

  • Robins, K. J., Hooks, D. O., Rehm, B. H., & Ackerley, D. F. (2013). Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS ONE, 8(3), e59200. doi:10.1371/journal.pone.0059200.

    Article  Google Scholar 

  • Ruder, W. C., Lu, T., & Collins, J. J. (2011). Synthetic biology moving into the clinic. Science, 333(6047), 1248–1252. doi:10.1126/science.1206843.

    Article  Google Scholar 

  • Schmidt, M. (2010). Xenobiology: A new form of life as the ultimate biosafety tool. BioEssays, 32(4), 322–331. http://dx.doi.org/10.1002/bies.200900147

  • Schmidt, M., & de Lorenzo, V. (2012). Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. FEBS Letters, 586(15), 2199–2206. doi:10.1016/j.febslet.2012.02.022.

    Article  Google Scholar 

  • Shin, J., & Noireaux, V. (2012). An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synthetic Biology, 1(1), 29–41. doi:10.1021/sb200016s.

    Article  Google Scholar 

  • Sismour, A. M., & Benner, S. A. (2005). The use of thymidine analogs to improve the replication of an extra DNA base pair: A synthetic biological system. Nucleic Acids Research, 33(17), 5640–5646. doi:10.1093/nar/gki873.

  • Sismour, A. M., Lutz, S., Park, J. H., Lutz, M. J., Boyer, P. L., Hughes, S. H., et al. (2004). PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1. Nucleic Acids Research, 32(2), 728–735. doi:10.1093/nar/gkh241.

    Article  Google Scholar 

  • Solé, R. V. (2009). Evolution and self-assembly of protocells. International Journal of Biochemistry and Cell Biology, 41(2), 274–284. doi:10.1016/j.biocel.2008.10.004.

    Article  Google Scholar 

  • Solé, R. V., Munteanu, A., Rodriguez-Caso, C., Macía, J., Sole, R. V., & Macia, J. (2007). Synthetic protocell biology: from reproduction to computation. Philosophical Transactions of the Royal Society Biological Sciences, 362(1486), 1727–1739. doi:10.1098/rstb.2007.2065.

    Article  Google Scholar 

  • Swartz, J. (2006). Developing cell-free biology for industrial applications. Journal of Industrial Microbiology and Biotechnology, 33(7), 476–485.

    Article  MathSciNet  Google Scholar 

  • Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 3(9), 711–721. doi:10.1038/nrmicro1234.

    Article  Google Scholar 

  • Tucker, J., & Zilinskas, R. (2006). The promise and perils of synthetic biology. New Atlantis, 12(1), 25–45.

    Google Scholar 

  • Underwood, K. A., Swartz, J. R., & Puglisi, J. D. (2005). Quantitative polysome analysis identifies limitations in bacterial cell-free protein synthesis. Biotechnology and Bioengineering, 91(4), 425–435. doi:10.1002/bit.20529.

    Article  Google Scholar 

  • Urban, P. L., Goodall, D. M., & Bruce, N. C. (2006). Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol Advances, 24(1), 42–57. doi:10.1016/j.biotechadv.2005.06.001.

    Article  Google Scholar 

  • Wenzel, M., Muller, A., Siemann-Herzberg, M., & Altenbuchner, J. (2011). Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Applied and Environment Microbiology, 77(18), 6419–6425. doi:10.1128/AEM.05219-11.

    Article  Google Scholar 

  • Wintermute, E. H., & Silver, P. A. (2010a). Dynamics in the mixed microbial concourse. Genes and Development, 24(23), 2603–2614. doi:10.1101/gad.1985210.

    Article  Google Scholar 

  • Wintermute, E. H., & Silver, P. A. (2010b). Emergent cooperation in microbial metabolism. Molecular Systems Biology, 6, 407. doi:10.1038/msb.2010.66.

    Article  Google Scholar 

  • Wright, O., Stan, G. B., & Ellis, T. (2013). Building-in biosafety for synthetic biology. Microbiology, 159(Pt 7), 1221–1235. doi:10.1099/mic.0.066308-0.

    Article  Google Scholar 

  • Xu, L., & Anchordoquy, T. (2011). Drug delivery trends in clinical trials and translational medicine: Challenges and opportunities in the delivery of nucleic acid-based therapeutics. Journal of Pharmaceutical Sciences, 100(1), 38–52. doi:10.1002/jps.22243.

    Article  Google Scholar 

  • Yang, Z., Chen, F., Alvarado, J. B., & Benner, S. A. (2011). Amplification, mutation, and sequencing of a six-letter synthetic genetic system. Journal of the American Chemical Society, 133(38), 15105–15112. doi:10.1021/ja204910n.

    Article  Google Scholar 

  • Yang, Z., Hutter, D., Sheng, P., Sismour, A. M., & Benner, S. A. (2006). Artificially expanded genetic information system: A new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Research, 34(21), 6095–6101. doi:10.1093/nar/gkl633.

    Article  Google Scholar 

  • Zawada, J. F., Yin, G., Steiner, A. R., Yang, J., Naresh, A., Roy, S. M., et al. (2011). Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnology and Bioengineering, 108(7), 1570–1578. doi:10.1002/bit.23103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Giese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giese, B., von Gleich, A. (2015). Hazards, Risks, and Low Hazard Development Paths of Synthetic Biology. In: Giese, B., Pade, C., Wigger, H., von Gleich, A. (eds) Synthetic Biology. Risk Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-02783-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02783-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02782-1

  • Online ISBN: 978-3-319-02783-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics