Skip to main content

Open-Loop Solvability Operator in Differential Games with Simple Motions in the Plane

  • Chapter
  • First Online:
Advances in Dynamic Games

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 13))

Abstract

The paper deals with an open-loop solvability operator in two-person zero-sum differential games with simple motions. This operator takes a given terminal set to the set defined at the initial instant whence the first player can bring the control system to the terminal set if the player is informed about the open-loop control of the second player. It is known that the operator possesses the semigroup property in the case of a convex terminal set. In the paper, sufficient conditions ensuring the semigroup property in the non-convex case are formulated and proved for problems in the plane. Examples are constructed to illustrate the relevance of the formulated conditions. The connection with the Hopf formula is analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez O, Barron E, Ishii H (1999) Hopf formulas for semicontinuous data. Indiana U Math J 48(3):993–1035

    Article  MathSciNet  MATH  Google Scholar 

  • Aubin J (1991) Viability theory. Birkhäuser, Boston

    MATH  Google Scholar 

  • Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton – Jacobi – Bellman Equations. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Bardi M, Evans L (1984) On Hopf’s formulas for solutions of HJ equations. Nonlinear Anal 8:1373–1381

    Article  MathSciNet  MATH  Google Scholar 

  • Botkin N (1984) Numerical construction of t-sections of a program absorption set in a linear differential game. In: Subbotin A, Patsko V (eds) Algorithms and programms of solution of linear differential games. Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk, pp 5–38 (in Russian)

    Google Scholar 

  • Cardaliaguet P, Quincampoix M, Saint-Pierre P (1999) Set-valued numerical analysis for optimal control and differential games. In: Bardi M, Raghavan T, Parthasarathy T (eds) Stochastic and differential games: theory and numerical methods. Annals of the International Society of Dynamic Games, vol 4. Birkhäuser, Boston, pp 177–247

    Chapter  Google Scholar 

  • Hadwiger H (1957) Vorlesungen uber inhalt, oberflache und isoperimetrie. Springer, Berlin

    Book  Google Scholar 

  • Hopf E (1965) Generalized solutions of nonlinear equations of first order. J Math Mech 14(6): 951–973

    MathSciNet  MATH  Google Scholar 

  • Isaacs R (1965) Differential games. Wiley, New York

    MATH  Google Scholar 

  • Isakova E, Logunova G, Patsko V (1984) Construction of stable bridges in a linear differential game with fixed terminal time. In: Subbotin A, Patsko V (eds) Algorithms and programms of solution of linear differential games. Ural Scientific Center of the Academy of sciences of the USSR, Sverdlovsk, pp 127–158 (in Russian)

    Google Scholar 

  • Krasovskii N, Subbotin A (1974) Positional differential games. Nauka, Moscow (in Russian)

    MATH  Google Scholar 

  • Krasovskii N, Subbotin A (1988) Game-theoretical control problems. Springer, New York

    Book  MATH  Google Scholar 

  • Polovinkin E, Balashov M (2004) Elements of convex and strongly convex analysis. Fizmatlit, Moscow (in Russian)

    Google Scholar 

  • Pontryagin L (1967) Linear differential games, II. Sov Math Dokl 8:910–912

    MATH  Google Scholar 

  • Pontryagin L (1981) Linear differential games of pursuit. Math USSR Sb 40(3):285–303

    Article  MATH  Google Scholar 

  • Pshenichnyy B, Sagaydak M (1971) Differential games with fixed time. J Cybern 1:117–135

    Article  MathSciNet  Google Scholar 

  • Rockafellar R (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Schwartz L (1967) Cours d’analyse, 1, 2. Hermann, Paris

    Google Scholar 

  • Subbotin A (1991) Minimax and viscosity solutions of Hamilton – Jacobi equations. Nauka, Moscow (in Russian)

    Google Scholar 

  • Subbotin A (1995) Generalized solutions of first-order PDEs: the dynamical optimization perspective. Birkhäuser, Boston

    Google Scholar 

Download references

Acknowledgments

We are grateful to the unknown reviewer for the valuable remarks. This research was carried out in the framework of the Program by Presidium of RAS “Fundamental problems of non-linear dynamics in mathematical and physical sciences” with financial support of Ural Branch of RAS (project No. 12-\(\Pi \)-1-1012) and was also supported by RFBR, grant No. 12-01-00537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii Patsko .

Editor information

Editors and Affiliations

Appendix

Appendix

Let us consider a connection between the question investigated in the present work and the well-known Hopf formula (Alvarez et al. 1999; Bardi and Evans 1984; Hopf 1965). 1) For an arbitrary proper (i.e., not identically equal to + ) function \(g: {\mathbb{R}}^{n} \rightarrow (-\infty,+\infty ]\), we define the Legendre transform

$$\displaystyle{{g}^{{\ast}}(s) =\sup _{x\in {\mathbb{R}}^{n}}[\langle x,s\rangle - g(x)],\quad s \in {\mathbb{R}}^{n}.}$$

By co g denote the convex hull of the function g. Properties of the function g  (Rockafellar 1970, Chap. 3, §16; Polovinkin and Balashov 2004) imply that if the proper function co g is continuous in \({\mathbb{R}}^{n}\), then

$$\displaystyle{ {(\mathrm{co}\,g)}^{{\ast}} = {g}^{{\ast}}. }$$
(12.36)

The support function ρ(⋅ , A) of a compact set \(A \subset {\mathbb{R}}^{n}\) is connected with the indicator function

$$\displaystyle{\sigma _{A}(x) = \left \{\begin{array}{ll} 0, &\quad x \in A,\\ + \infty, &\quad x\not\in A \end{array} \right.}$$

of the set A by the relation

$$\displaystyle{ \rho (\cdot,A) =\sigma _{ A}^{{\ast}}(\cdot ). }$$
(12.37)

2) The Hopf formula

$$\displaystyle{ w(t,x):=\sup _{s\in {\mathbb{R}}^{n}}[\langle x,s\rangle {-\varphi }^{{\ast}}(s) + (\vartheta -t)H(s)],\ \ \ \ s \in {R}^{n},\ \ x \in {R}^{n},\ \ t \leq \vartheta }$$
(12.38)

represents the generalized (viscosity (Bardi and Capuzzo-Dolcetta 1997) or minimax (Subbotin 19911995)) continuous solution of the Cauchy problem for the Hamilton–Jacobi equation

$$\displaystyle{ \begin{array}{rl} w_{t}(t,x) + H(w_{x}(t,x)) = 0,\quad &t \in (0,\vartheta ),\quad x \in {\mathbb{R}}^{n}; \\ w(\vartheta,x) =\varphi (x),\quad &x \in {\mathbb{R}}^{n},\end{array} }$$
(12.39)

with convex continuous terminal function \(\varphi\) (Bardi and Evans 1984).

3) Set

$$\displaystyle{H(s) =\max _{q\in Q}\langle q,s\rangle +\min _{p\in P}\langle p,s\rangle,\quad \varphi (s) =\sigma _{M}(s),}$$

where M is a convex compact set. Consider the function \(\overline{w}\) defined formally by the Hopf formula (12.38) for these data.

Let us show that

$$\displaystyle{ T_{\vartheta -t}(M) =\{ x \in {\mathbb{R}}^{n}:\ \overline{w}(t,x) \leq 0\}. }$$
(12.40)

As a preliminary, for the convex sets A and B, we establish the relation

$$\displaystyle{ \rho (\;\cdot \;,\;A\mathop{{-}}\limits^{{\ast}}B) =\mathrm{ co}\,{\bigl (\rho (\;\cdot \;,\;A) -\rho (\;\cdot \;,\;B)\bigr )}. }$$
(12.41)

We use the equality

$$\displaystyle{A\mathop{{-}}\limits^{{\ast}}B =\bigcap _{ b\in B}(A - b).}$$

It is known that the support function for the intersection of an arbitrary collection of compact convex sets coincides (Rockafellar 1970) with the convex hull of the function that is the minimum of support functions for the sets used in the intersection. In our case,

$$\displaystyle{\min _{b\in B}\rho (s,\;A - b) =\rho (s,\;A) +\min _{b\in B}\langle - b,\;s\rangle =\rho (s,\;A) -\rho (s,\;B).}$$

Consequently, (12.41) holds.

Applying (12.41), for the convex set M and \(\tau =\vartheta -t\), we get

$$\displaystyle{ \rho (s,T_{\tau }(M)) =\mathrm{ co}\,\,h_{\tau }(s), }$$
(12.42)

where

$$\displaystyle{ h_{\tau }(s):=\rho (s,M) +\rho (s,-\tau P) -\rho (s,\tau Q) =\rho (s,M) -\tau H(s). }$$
(12.43)

The compactness of the sets P and Q implies that the function co h τ is continuous. Using (12.36) and (12.42), we get

$$\displaystyle{ h_{\tau }^{{\ast}}(x) = {(\mathrm{co}\,\,h_{\tau })}^{{\ast}}(x) =\sup _{ s\in {\mathbb{R}}^{n}}[\langle x,s\rangle - (\mathrm{co}\,\,h_{\tau })(s)] =\sup _{s\in {\mathbb{R}}^{n}}[\langle x,s\rangle -\rho (s,T_{\tau }(M))]. }$$
(12.44)

On the other hand, by (12.43) and (12.37), we calculate

$$\displaystyle{ h_{\tau }^{{\ast}}(x) =\sup _{ s\in {\mathbb{R}}^{n}}[\langle x,s\rangle - h_{\tau }(s)] =\sup _{s\in {\mathbb{R}}^{n}}[\langle x,s\rangle -\sigma _{M}^{{\ast}}(s) +\tau H(s)]. }$$
(12.45)

Since

$$\displaystyle{T_{\vartheta -t}(M) =\{ x \in {\mathbb{R}}^{n}:\ \ \sup _{ s\in {\mathbb{R}}^{n}}[\langle x,s\rangle -\rho (s,T_{\vartheta -t}(M))] \leq 0\},}$$

applying (12.45), we write

$$\displaystyle{T_{\vartheta -t}(M) = \left \{x \in {\mathbb{R}}^{n}:\ \ h_{\tau }^{{\ast}}(x) \leq 0\right \}.}$$

Comparing (12.38), (12.44), and (12.45), we get (12.40).

4) Thus, if the compact set M is convex, then

$$\displaystyle{W_{0}(t) = T_{\vartheta -t}(M) =\{ x \in {\mathbb{R}}^{n}:\ \overline{w}(t,x) \leq 0\}.}$$

Now, in the case of a convex set M, we have two variants of useful description of the set W 0(t), whence the guidance problem of the first player to the set M at the fixed instant \(\vartheta\) is solvable, namely, by the Pshenichnyi formula and by the Hopf formula. The Pshenichnyi formula deals with sets, while the Hopf formula uses functions.

In the paper, for the problems in the plane, we obtain sufficient conditions to describe the set W 0(t) by the Pshenichnyi formula for a non-convex set M. The Hopf formula does not work in the non-convex case.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamneva, L., Patsko, V. (2013). Open-Loop Solvability Operator in Differential Games with Simple Motions in the Plane. In: Křivan, V., Zaccour, G. (eds) Advances in Dynamic Games. Annals of the International Society of Dynamic Games, vol 13. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-02690-9_12

Download citation

Publish with us

Policies and ethics