Skip to main content

Introduction to the Kondo Effect

  • Chapter
  • First Online:
Electronic Structure of Metal Phthalocyanines on Ag(100)

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Conduction measurements of magnetic systems at low temperature, like the present study of 3d transition metal MePc on Ag(100) are closely intertwined with a phenomenon known as the Kondo effect. Essentially it is a coupling of the conduction electrons of a metal to a magnetic impurity. Below a critical temperature, the so-called Kondo temperature, the coupling leads to a screening of the spin of the magnetic impurity due to the creation of a many-body singlet state. This gives rise to a typical sharp resonance in the DOS at the Fermi level, which can be accessed experimentally by STS measurements. This Kondo resonance is characteristic of magnetic impurities on a non-magnetic surface. Hereby it provides a method for STM measurements to probe the magnetic properties of adatoms or molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that not all features at \(E_{F}\) are related to the Kondo effect. However the characteristic increase in width of the resonance peak with temperature, as well as its intensity evolution can be used as proof that a Kondo system is measured [15, 16], see also Eqs. 3.18 and  3.19.

References

  1. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997). ISBN 9780521599474

    Google Scholar 

  2. P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1995). ISBN 9783540593645

    Google Scholar 

  3. G. Grosso, G.P. Parravicini, Solid State Physics, 1st edn. (Academic Press, London, 2000). ISBN 012304460X

    Google Scholar 

  4. P. Phillips, P. Phillips, Advanced Solid State Physics, 1st edn. (Westview Press, Boulder, 2002)

    Google Scholar 

  5. J.P. Franck, F.D. Manchester, D.L. Martin, The specific heat of pure copper and of some dilute Copper+Iron alloys showing a minimum in the electrical resistance at low temperatures. Proc. R. Soc. Lond. A 263(1315), 494–507 (1961). doi:10.1098/rspa.1961.0176

  6. W. de Haas, J. de Boer, G. van dën Berg, The electrical resistance of gold, copper and lead at low temperatures. Physica 1(7–12), 1115–1124 (1934). doi:16/S0031-8914(34)80310-2

  7. J. Kondo, Resistance minimum in dilute magnetic alloys. Progress Theoret. Phys. 32(1), 37–49 (1964)

    Article  ADS  Google Scholar 

  8. J.R. Schrieffer, P.A. Wolff, Relation between the anderson and Kondo hamiltonians. Phys. Rev. 149(2), 491 (1966). doi:10.1103/PhysRev.149.491

    Google Scholar 

  9. P.W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem. J. Phys. C: Solid State Phys. 3(12), 2436–2441 (1970). doi:10.1088/0022-3719/3/12/008

    Google Scholar 

  10. K.G. Wilson, The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47(4), 773 (1975). doi:10.1103/RevModPhys.47.773

    Google Scholar 

  11. P.W. Anderson, Localized magnetic states in metals. Phys. Rev. 124(1), 41–53 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  12. F.D.M. Haldane, Theory of the atomic limit of the anderson model. i. perturbation expansions re-examined. J. Phys. C: Solid State Phys. 11(24), 5015–5034 (1978). doi:10.1088/0022-3719/11/24/030

  13. A. Abrikosov, Magnetic impurities in metals: the sd exchange model. Physics 2, 5 (1965)

    Google Scholar 

  14. H. Suhl, Dispersion theory of the Kondo effect. Phys. Rev. 138, A515–A523 (1965). doi:10.1103/PhysRev.138.A515

    Google Scholar 

  15. K. Nagaoka, T. Jamneala, M. Grobis, M.F. Crommie, Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88(7), 077205 (2002). doi:10.1103/PhysRevLett.88.077205

    Google Scholar 

  16. M. Ternes, A.J. Heinrich, W.D. Schneider, Spectroscopic manifestations of the Kondo effect on single adatoms. J. Phys.: Condens. Matter 21, 053001 (2009)

    ADS  Google Scholar 

  17. T.A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch, P. Mavropoulos, P.H. Dederichs, F. Mallet, L. Saminadayar, C. Bäuerle, Kondo decoherence: Finding the right spin model for iron impurities in gold and silver. Phys. Rev. Lett. 102(5), 056802 (2009). doi:10.1103/PhysRevLett.102.056802

  18. P. Nozieres, A. Blandin, Kondo effect in real metals. J. Phys. 41, 193–211 (1980)

    Article  Google Scholar 

  19. A. Posazhennikova, P. Coleman, Anomalous conductance of a spin-1 quantum dot. Phys. Rev. Lett. 94(3), 036802 (2005). doi:10.1103/PhysRevLett.94.036802

    Google Scholar 

  20. N. Roch, S. Florens, T.A. Costi, W. Wernsdorfer, F. Balestro, Observation of the underscreened Kondo effect in a molecular transistor. Phys. Rev. Lett. 103(19), 197202 (2009). doi:10.1103/PhysRevLett.103.197202

    Google Scholar 

  21. J.J. Parks, A.R. Champagne, T.A. Costi, W.W. Shum, A.N. Pasupathy, E. Neuscamman, S. Flores-Torres, P.S. Cornaglia, A.A. Aligia, C.A. Balseiro, G.K. Chan, H.D. Abruña, D.C. Ralph, Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328(5984), 1370–1373 (2010). doi:10.1126/science.1186874

    Google Scholar 

  22. I. Fernández-Torrente, K.J. Franke, J.I. Pascual, Vibrational Kondo effect in pure organic Charge-Transfer assemblies. Phys. Rev. Lett. 101(21), 217203 (2008). doi:10.1103/PhysRevLett.101.217203

    Google Scholar 

  23. J. Paaske, K. Flensberg, Vibrational sidebands and the Kondo effect in molecular transistors. Phys. Rev. Lett. 94(17), 176801 (2005). doi:10.1103/PhysRevLett.94.176801

    Google Scholar 

  24. L. Yu, Z. Keane, J. Ciszek, L. Cheng, M. Stewart, J. Tour, D. Natelson, Inelastic electron tunneling via molecular vibrations in Single-Molecule transistors. Phys. Rev. Lett. 93, 266802–266802 (2004)

    Article  ADS  Google Scholar 

  25. T. Choi, S. Bedwani, A. Rochefort, C. Chen, A.J. Epstein, J.A. Gupta, A single molecule Kondo switch: multistability of tetracyanoethylene on Cu(111). Nano Lett. 10(10), 4175–4180 (2010)

    Article  ADS  Google Scholar 

  26. A. Kogan, G. Granger, M.A. Kastner, D. Goldhaber-Gordon, H. Shtrikman, Singlet-triplet transition in a single-electron transistor at zero magnetic eld. Phys. Rev. B 67, 113309–113309 (2003)

    Article  ADS  Google Scholar 

  27. E.A. Osorio, K. Moth-Poulsen, H.S.J.v.d. Zant, J. Paaske, P. Hedegaard, K. Flensberg, J. Bendix, T. Bjornholm, Electrical manipulation of spin states in a single electrostatically gated Transition-Metal complex. Nano Lett. 10(1), 105–110 (2009)

    Google Scholar 

  28. J. Paaske, A. Rosch, P. Wölfle, N. Mason, C.M. Marcus, J. Nygård, Non-equilibrium singlet-triplet Kondo effect in carbon nanotubes. Nat. Phys. 2(7), 460–464 (2006)

    Google Scholar 

  29. N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, F. Balestro, Quantum phase transition in a single-molecule quantum dot. Nature 453, 633–637 (2008)

    Article  ADS  Google Scholar 

  30. A. Kogan, S. Amasha, M.A. Kastner, Photon-Induced Kondo satellites in a Single-Electron transistor. Science 304(5675), 1293–1295 (2004)

    Article  ADS  Google Scholar 

  31. C. Buizert, A. Oiwa, K. Shibata, K. Hirakawa, S. Tarucha, Kondo universal scaling for a quantum dot coupled to superconducting leads. Phys. Rev. Lett. 99(13), 136806 (2007)

    Article  ADS  Google Scholar 

  32. G.D. Scott, D. Natelson, Kondo resonances in molecular devices. ACS Nano 4(7), 3560–3579 (2010). doi:10.1021/nn100793s

    Google Scholar 

  33. L. Kouwenhoven, L. Glazman, Revival of the Kondo effect. Phys. World 14(1), 33–38 (2001). arXiv:cond-mat/0104100

    Google Scholar 

  34. J. Li, W. Schneider, R. Berndt, B. Delley, Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80(13), 2893 (1998). doi:10.1103/PhysRevLett.80.2893

    Google Scholar 

  35. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280(5363), 567–569 (1998)

    Article  ADS  Google Scholar 

  36. N. Knorr, M.A. Schneider, L. Diekhöner, P. Wahl, K. Kern, Kondo effect of single Co adatoms on Cu surfaces. Phys. Rev. Lett. 88(9), 096804 (2002). doi:0.1103/PhysRevLett.88.096804

    Google Scholar 

  37. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Local spectroscopy of a Kondo impurity: Co on Au(111). Phys. Rev. B 64(16), 165412 (2001). doi:10.1103/PhysRevB.64.165412

    Google Scholar 

  38. A. Zhao, Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309(5740), 1542–1544 (2005). doi:10.1126/science.1113449

    Google Scholar 

  39. L. Gao, W. Ji, Y.B. Hu, Z.H. Cheng, Z.T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S.X. Du, W.A. Hofer, X.C. Xie, H. Gao, Site-Specific Kondo effect at ambient temperatures in Iron-Based molecules. Phys. Rev. Lett. 99(10) (2007). doi:10.1103/PhysRevLett.99.106402.

  40. P. Wahl, L. Diekhöner, G. Wittich, L. Vitali, M.A. Schneider, K. Kern, Kondo effect of molecular complexes at surfaces: Ligand control of the local spin coupling. Phys. Rev. Lett. 95(16), 166601 (2005). doi:10.1103/PhysRevLett.95.166601

    Google Scholar 

  41. N. Néel, J. Kröger, R. Berndt, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Controlling the Kondo effect in CoCu\(_{n}\) clusters atom by atom. Phys. Rev. Lett. 101(26), 266803 (2008). doi:10.1103/PhysRevLett.101.266803

  42. Y. Fu, S. Ji, X. Chen, X. Ma, R. Wu, C. Wang, W. Duan, X. Qiu, B. Sun, P. Zhang, J. Jia, Q. Xue, Manipulating the Kondo resonance through quantum size effects. Phys. Rev. Lett. 99(25), 256601 (2007). doi:10.1103/PhysRevLett.99.256601

  43. T. Uchihashi, J. Zhang, J. Kröger, R. Berndt, Quantum modulation of the Kondo resonance of Co adatoms on Cu/Co/Cu(100): low-temperature scanning tunneling spectroscopy study. Phys. Rev. B 78(3), 033402 (2008). doi:10.1103/PhysRevB.78.033402

    Google Scholar 

  44. P. Wahl, P. Simon, L. Diekhöner, V.S. Stepanyuk, P. Bruno, M.A. Schneider, K. Kern, Exchange interaction between single magnetic adatoms. Phys. Rev. Lett. 98(5), 056601 (2007). doi:10.1103/PhysRevLett.98.056601

    Google Scholar 

  45. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124(6), 1866 (1961). doi:10.1103/PhysRev.124.1866

    Google Scholar 

  46. O. Újsághy, J. Kroha, L. Szunyogh, A. Zawadowski, Theory of the fano resonance in the STM tunneling density of states due to a single Kondo impurity. Phys. Rev. Lett. 85(12), 2557 (2000). doi:10.1103/PhysRevLett.85.2557

    Google Scholar 

  47. J. Merino, O. Gunnarsson, Simple model for scanning tunneling spectroscopy of noble metal surfaces with adsorbed Kondo impurities. Phys. Rev. B 69(11), 115404 (2004). doi:10.1103/PhysRevB.69.115404

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Krull .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krull, C. (2014). Introduction to the Kondo Effect. In: Electronic Structure of Metal Phthalocyanines on Ag(100). Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-02660-2_3

Download citation

Publish with us

Policies and ethics