Skip to main content

Electron and Phonon Transport in Graphene in and out of the Bulk

  • Chapter
  • First Online:
Physics of Graphene

Abstract

Carbon atoms have the unique capability of associating with each other in different ways at the macro- and nanoscopic scales to form various architectures, some of them being unique. Following the discovery of fullerenes, these last twenty-five years witnessed the discovery of some new forms of carbon atom associations leading to a large diversity of nanocarbons with fascinating properties. As regards bulk carbons, the decade preceding the discovery of fullerenes paved the way for finding some physical properties which were found later to be displayed in these new nano entities. This mainly concerns the semiclassical and, more particularly, the quantum aspects of two-dimensional (2D) electronic transport and the behavior of phonons in low-dimensional materials. These effects are discussed here in relation to the electrical and thermal conductivities of various nano-carbon based materials. This chapter also reflects the obvious similarities and differences observed in the transport properties of an isolated single layer graphene out of the bulk (SLG), or a few layers of graphene out of the bulk (FLG), supported or suspended, and those of a single (stage-1) or more (stage-n, where n=2,3,…) of these carbon layer planes sandwiched between planes formed by other chemical species, as is the case for macroscopic graphite intercalation compounds (GICs), and more particularly quasi 2D acceptor compounds (GACs), or even, in some cases, pristine highly oriented pyrolytic graphite (HOPG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that HOPG is not a single crystal but instead could be considered as a 2D polycrystalline material with a crystallite size of about 10 micrometers when heat treated above 3,000 °C.

  2. 2.

    One should note that the term “graphene” was already used in 1987 by Mouras et al. (Ref. [2]) to describe the single graphite sheets, which together with the intercalate species, constitute the graphite intercalation compounds (GICs).

  3. 3.

    See also Ref. [5].

  4. 4.

    See, for example Refs. [12, 19] and [23].

  5. 5.

    Actually the density of carriers at 0 K varies from one semimetal to another. If we consider the group V semimetals, the density at 0 K is very small in bismuth and is comparable to that of pristine graphite, it is larger in antimony and much larger in arsenic, where the electron gas is still degenerate at room temperature.

  6. 6.

    The word “doping” commonly attributed to intercalation—as it is for conducting polymers—is not correct in this context. Solid state physicists introduced this concept initially to define the introduction of a small amount of foreign atoms which increases the charge carrier density without modifying the band structure which is considered according to the rigid band model. This is far from being the case in GICs or in electroactive polymers.

  7. 7.

    The mobility concept holds for a diffusive regime.

  8. 8.

    Note that k F ζ≫1 is also the condition for transport in the Boltzmann approximation.

  9. 9.

    The common reference to copper, which is justified when we speak about practical applications, is meaningless when we consider the physics: one is comparing a material with the highest electronic thermal conductivity (copper) to the family of carbon materials with a low carrier density (diamond, HOPG, VDF, …). Solid state physicists know that pure covalent materials have the highest lattice conductivities, which are often higher than the highest electronic conductivities. Also diamond and HOPG in-plane are known to be the best bulk thermal conductors. This high thermal conductivity might be understood qualitatively using a naïve mechanical picture: strong covalent bonding and light atoms favor the transmission of lattice vibrations.

  10. 10.

    Note that I c varies slightly with the stage of the compound, but the effect is too small to be taken into consideration in this context.

References

  1. K.S. Novoselov et al., Science 306, 666 (2004)

    ADS  Google Scholar 

  2. S. Mouras et al., Rev. Chim. Minér. 24, 572 (1987)

    Google Scholar 

  3. A.W. Moore, A.R. Ubbelohde, D.A. Young, Proc. R. Soc. 280, 153 (1964)

    ADS  Google Scholar 

  4. J. Blinowski, H.H. Nguyen, C. Rigaux, J.P. Vieren, R. LeToullec, G. Furdin, A. Hérold, J. Mélin, J. Phys. 41, 47 (1980)

    Google Scholar 

  5. J.-P. Issi, in Graphite Intercalation Compounds, ed. by H. Zabel, S.A. Solin. Springer Series in Materials Science, vol. II (Springer, Berlin, 1992)

    Google Scholar 

  6. N. Daumas, A. Hérold, C.R. Séance Hebd, Acad. Sci. Paris C 268, 373 (1969)

    Google Scholar 

  7. A.H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  8. A.K. Geim, Science 324, 1530–1534 (2009)

    ADS  Google Scholar 

  9. J.-P. Issi, B. Nysten, Electrical and thermal transport properties in carbon fibers, in Carbon Fibers, ed. by J.-B. Donnet, S. Rebouillat, T.K. Wang, J.C.M. Peng (Marcel Dekker, New York, 1998)

    Google Scholar 

  10. B. Nysten, J.-P. Issi, R. Barton Jr., D.R. Boyington, J.G. Lavin, Phys. Rev. B 44, 2142 (1991)

    ADS  Google Scholar 

  11. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    MATH  ADS  Google Scholar 

  12. H. Zabel, S.A. Solin, Graphite Intercalation Compounds II. Springer Series in Materials Science, vol. 18 (Springer, Berlin, 1992)

    Google Scholar 

  13. J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960)

    MATH  Google Scholar 

  14. B.T. Kelly, Physics of Graphite (Applied Science Publishers, London, 1981)

    Google Scholar 

  15. A.R. Ubbelohde, F.A. Lewis, Graphite and Its Crystal Compounds (Oxford University Press, Oxford, 1960)

    Google Scholar 

  16. S. Mrozowski, A. Chaberski, Phys. Rev. 104, 74 (1956)

    ADS  Google Scholar 

  17. S. Mrozowski, Carbon 9, 97 (1971)

    Google Scholar 

  18. A. Pacault, Carbon 12, 1 (1974)

    Google Scholar 

  19. I.L. Spain, Electronic transport properties of graphite, carbons, and related materials, in Chemistry and Physics of Carbon, vol. 13, ed. by P.L. Walker Jr., P.A. Thrower (Marcel Dekker, New York, 1981), p. 119

    Google Scholar 

  20. P. Delhaes, A. Marchand, Carbon 3, 115 (1965)

    Google Scholar 

  21. P. Delhaes, A. Marchand, Carbon 3, 125 (1965)

    Google Scholar 

  22. P. Delhaes, Carbon-Based Solids and Materials (Wiley, Hoboken, 2011)

    Google Scholar 

  23. M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139 (1981). Reprinted in 2002

    ADS  Google Scholar 

  24. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  25. N.M.R. Peres, J. Phys. Condens. Matter 21, 323201 (2009)

    Google Scholar 

  26. D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, Angew. Chem., Int. Ed. Engl. 49, 9336 (2010)

    Google Scholar 

  27. M. Terrones et al., Nano Today 5, 351 (2010)

    Google Scholar 

  28. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    ADS  Google Scholar 

  29. A.F. Young, P. Kim, Annu. Rev. Condens. Matter Phys. 2, 101–120 (2011)

    ADS  Google Scholar 

  30. H.P. Boehm, Z. Naturforsch. 17b, 150 (1962)

    ADS  Google Scholar 

  31. F.L. Vogel, G.M.T. Foley, C. Zeller, E.R. Falardeau, J. Gan, Mater. Sci. Eng. 31, 261 (1977)

    Google Scholar 

  32. L. Piraux, J.-P. Issi, L. Salamanca-Riba, M.S. Dresselhaus, Synth. Met. 16, 93 (1986)

    Google Scholar 

  33. J.-P. Issi, Transport in acceptor GICs: have our efforts been rewarded? Mater. Sci. Forum 91–93, 471 (1992)

    Google Scholar 

  34. L. Piraux, J.-P. Issi, J.-P. Michenaud, E. McRae, J.-F. Marêché, Solid State Commun. 56, 567 (1985)

    ADS  Google Scholar 

  35. J.L. Piraux, Mater. Res. 5, 1285 (1990)

    ADS  Google Scholar 

  36. L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. Van Haesendonck, Y. Bruynseraede, Phys. Rev. Lett. 76, 479 (1996)

    ADS  Google Scholar 

  37. E.H. Sondheimer, Proc. R. Soc. Lond. A 65, 561 (1952)

    MATH  Google Scholar 

  38. J.-P. Issi, Electronic conduction, in World of Carbon, ed. by P. Delhaes (Gordon and Breach, London, 2001)

    Google Scholar 

  39. J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)

    ADS  Google Scholar 

  40. J.W. McClure, Phys. Rev. 108, 612 (1957)

    ADS  Google Scholar 

  41. J.W. McClure, Phys. Rev. 119, 606 (1960)

    ADS  Google Scholar 

  42. J. Blinowski, C.H.H. Rigaux, J. Phys. 41, 667 (1980)

    Google Scholar 

  43. L.M. Malard et al., Phys. Rev. B 76, 201401(R) (2007)

    ADS  Google Scholar 

  44. Z.Q. Li et al., Phys. Rev. Lett. 102, 037403 (2009)

    ADS  Google Scholar 

  45. A.B. Kuzmenko et al., Phys. Rev. B 79, 115441 (2009)

    ADS  Google Scholar 

  46. T.C. Chieu, M.S. Dresselhaus, M. Endo, Phys. Rev. B 26, 5867 (1982)

    ADS  Google Scholar 

  47. L. Pietronero, S. Strassler, Synth. Met. 3, 209 (1981)

    Google Scholar 

  48. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008)

    ADS  Google Scholar 

  49. M.S. Dresselhaus, J. Phys. Chem. Solids 32, 3 (1971)

    Google Scholar 

  50. J.-P. Issi, Aust. J. Phys. 32, 585 (1979)

    ADS  Google Scholar 

  51. R.N. Zitter, Phys. Rev. 127, 1471 (1962)

    ADS  Google Scholar 

  52. R. Hartman, Phys. Rev. 181, 1070 (1969)

    ADS  Google Scholar 

  53. J.-P. Michenaud, J.-P. Issi, J. Phys. C 5, 3061 (1972)

    ADS  Google Scholar 

  54. S. Ilani, P.L. McEuen, Annu. Rev. Condens. Matter Phys. 1, 1 (2010)

    ADS  Google Scholar 

  55. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    ADS  Google Scholar 

  56. G. Bergmann, Phys. Rep. 107, 1 (1984)

    ADS  Google Scholar 

  57. V. Bayot, L. Piraux, J.-P. Michenaud, J.-P. Issi, Phys. Rev. B 40, 3514 (1989)

    ADS  Google Scholar 

  58. B.L. Altshuler, A.G. Aronov, P.A. Lee, Phys. Rev. Lett. 44, 1288 (1980)

    ADS  Google Scholar 

  59. H. Fukuyama, J. Phys. Soc. Jpn. 48, 2169 (1980)

    ADS  Google Scholar 

  60. L. Piraux, V. Bayot, J.-P. Issi, M.S. Dresselhaus, M. Endo, T. Nakajima, Phys. Rev. B 41, 4961 (1990)

    ADS  Google Scholar 

  61. M.S. Dresselhaus, M. Endo, J.-P. Issi, in Chemistry, Physics and Applications of Fluorine-Carbon and Fluoride-Carbon Compounds, ed. by T. Nakajima (Marcel Dekker, New York, 1995), p. 95

    Google Scholar 

  62. F. Withers, M. Dubois, A.K. Savchenko, Phys. Rev. B 82, 073403 (2010)

    ADS  Google Scholar 

  63. X. Hong, S. Cheng, C. Herding, J. Zhu, Phys. Rev. B 83, 085410 (2011)

    ADS  Google Scholar 

  64. S.-H. Cheng et al., Phys. Rev. B 81, 205435 (2010)

    ADS  Google Scholar 

  65. K. Zou, J. Zhu, Phys. Rev. B 82, 081407(R) (2010)

    ADS  Google Scholar 

  66. S. Ghosh et al., Nat. Mater. 9, 555 (2010)

    ADS  Google Scholar 

  67. P.G. Klemens, J. Wide Bandgap Mater. 7, 332 (2000)

    Google Scholar 

  68. P.G. Klemens, Graphite, graphene and carbon nanotubes, in Proceedings of the 26th International Thermal Conductivity Conference and the 14th International Thermal Expansion Symposium, ed. by R. Dinwiddie (2004). ISBN13: 978-1-932078-36-7

    Google Scholar 

  69. D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phys. Rev. B 79, 155413 (2009)

    ADS  Google Scholar 

  70. J.-P. Issi, J. Heremans, M.S. Dresselhaus, Phys. Rev. B 27, 1333 (1983)

    ADS  Google Scholar 

  71. R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976)

    Google Scholar 

  72. L. Piraux, B. Nysten, A. Haquenne, J.-P. Issi, M.S. Dresselhaus, M. Endo, Solid State Commun. 50, 697 (1984)

    ADS  Google Scholar 

  73. B. Nysten, L. Piraux, J.-P. Issi, Synth. Met. 12, 505 (1985)

    Google Scholar 

  74. P.G. Klemens, D.F. Pedraza, Carbon 32, 735 (1994)

    Google Scholar 

  75. M.M. Sadeghi, M.T. Pettes, L. Shi, Thermal transport in graphene. Solid State Commun. 152, 1321 (2012)

    ADS  Google Scholar 

  76. A. de Combarieu, Bull. Inst. Int. Froid. Annexe 2, 63 (1965)

    Google Scholar 

  77. C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, A.K. Geim, ACS Nano 4, 1889 (2010)

    Google Scholar 

  78. S.S. Chen, A.L. Moore, W. Cai, J.W. Suk, J. An, C. Mishra, C. Amos, C.W. Magnuson, J. Kang, L. Shi, R.F. Ruoff, ACS Nano 5, 321 (2011)

    Google Scholar 

  79. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    ADS  Google Scholar 

  80. J.U. Lee, D. Yoon, H. Kim, S.W. Lee, H. Cheong, Phys. Rev. B 83, 081419(R) (2011)

    ADS  Google Scholar 

  81. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001)

    ADS  Google Scholar 

  82. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 6, 96 (2006)

    ADS  Google Scholar 

  83. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59, 2514(R) (1999)

    ADS  Google Scholar 

  84. C.H. Yu, L. Shi, Z. Yao, D.Y. Li, A. Majumdar, Nano Lett. 5, 1842 (2005)

    ADS  Google Scholar 

  85. T.-Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Nano Lett. 6, 1583 (2006)

    ADS  Google Scholar 

  86. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Phys. Rev. Lett. 95, 065502 (2005)

    ADS  Google Scholar 

  87. Z.L. Wang, D.W. Tang, X.B. Li, X.H. Zheng, W.G. Zhang, L.X. Zheng, Y.T. Zhu, A.Z. Jin, H.F. Yang, C.Z. Gu, Appl. Phys. Lett. 91, 123119 (2007)

    ADS  Google Scholar 

  88. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X.S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, L. Shi, Science 328, 213 (2010)

    ADS  Google Scholar 

  89. A.W. Smith, Phys. Rev. 95, 1095 (1954)

    ADS  Google Scholar 

  90. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 45 (2005)

    ADS  Google Scholar 

  91. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51 (2009)

    ADS  Google Scholar 

  92. P.T. Araujo, D.L. Mafra, K. Sato, R. Saito, J. Kong, M.S. Dresselhaus, Phys. Rev. Lett. 109, 046801 (2012)

    ADS  Google Scholar 

  93. D.L. Mafra, J. Kong, K. Sato, R. Saito, M.S. Dresselhau, P.T. Araujo, Phys. Rev. B 86, 195434 (2012)

    ADS  Google Scholar 

  94. P.T. Araujo, D.L. Mafra, K. Sato, R. Saito, J. Kong, M.S. Dresselhaus, Sci. Rep. 2, 1017 (2012)

    ADS  Google Scholar 

  95. M. Lazzeri, F. Mauri, Phys. Rev. Lett. 97, 266407 (2006)

    ADS  Google Scholar 

  96. L.M. Malard, D.C. Elias, E.S. Alves, M.A. Pimenta, Phys. Rev. Lett. 101, 257401 (2008)

    ADS  Google Scholar 

  97. J. Yan, E.A. Henriksen, P. Kim, A. Pinczuk, Phys. Rev. Lett. 101, 136804 (2008)

    ADS  Google Scholar 

  98. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    ADS  Google Scholar 

  99. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindara, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Adv. Mater. 21, 4726 (2009)

    Google Scholar 

  100. C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Nano Lett. 11, 164 (2011)

    ADS  Google Scholar 

  101. F. Tuinstra, J.L. Koenig, J. Phys. Chem. 53, 1126 (1970)

    Google Scholar 

  102. L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-Paniago, M. Pimenta, Appl. Phys. Lett. 88, 163106 (2006)

    ADS  Google Scholar 

  103. M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48, 1592 (2010)

    Google Scholar 

  104. P.T. Araujo, M. Terrones, M.S. Dresselhaus, Mater. Today 15, 98 (2012)

    Google Scholar 

  105. L.G. Cancado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11, 3190 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mildred S. Dresselhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Issi, JP., Araujo, P.T., Dresselhaus, M.S. (2014). Electron and Phonon Transport in Graphene in and out of the Bulk. In: Aoki, H., S. Dresselhaus, M. (eds) Physics of Graphene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-02633-6_3

Download citation

Publish with us

Policies and ethics