Skip to main content

Random Planar Geometry

  • Chapter
  • First Online:
Coarse Geometry and Randomness

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2100))

  • 1636 Accesses

Abstract

What is a typical random surface? This question has arisen in the theory of two-dimensional quantum gravity where discrete triangulations have been considered as a discretization of a random continuum Riemann surface. As we will see the typical random surface has a geometry which is very different from the one of the Euclidean plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The real theorem actually deals directly with maps.

References

  1. A. Ancona, Positive harmonic functions and hyperbolicity, in Potential Theory—Surveys and Problems, Prague, 1987. Lecture Notes in Mathematics, vol. 1344 (Springer, Berlin, 1988), pp. 1–23

    Google Scholar 

  2. O. Angel, Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13(5), 935–974 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Angel, O. Schramm, Uniform infinite planar triangulations. Commun. Math. Phys. 241(2–3), 191–213 (2003)

    MathSciNet  MATH  Google Scholar 

  4. I. Benjamini, N. Curien, On limits of graphs sphere packed in Euclidean space and applications. Europ. J. Combin. 32(7), 975–984 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Benjamini, N. Curien, Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points. Geom. Funct. Anal. 23(2), 501–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Benjamini, R. Lyons, O. Schramm, Percolation perturbations in potential theory and random walks, in Random Walks and Discrete Potential Theory, Cortona, 1997. Symposia Mathematica XXXIX (Cambridge University Press, Cambridge, 1999), pp. 56–84

    Google Scholar 

  7. I. Benjamini, O. Schramm, Percolation in the hyperbolic plane. J. Am. Math. Soc. 14(2), 487–507 (2001) (electronic)

    Google Scholar 

  8. I. Benjamini, O. Schramm, Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 pp. (2001) (electronic)

    Google Scholar 

  9. I. Benjamini, O. Schramm, Lack of sphere packing of graphs via non-linear potential theory. arXiv preprint arXiv:0910.3071 (2009)

    Google Scholar 

  10. J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry, Hyperbolic geometry, in Flavors of Geometry. Mathematical Sciences Research Institute Publications, vol. 31 (Cambridge University Press, Cambridge, 1997), pp. 59–115

    Google Scholar 

  11. N. Curien, L. Ménard, G. Miermont, A view from infinity of the uniform infinite planar quadrangulation. arXiv preprint arXiv:1201.1052 (2012)

    Google Scholar 

  12. B. Duplantier, S. Sheffield, Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Fleischner, W. Imrich, Transitive planar graphs. Math. Slovaca 29(2), 97–106 (1979)

    MathSciNet  Google Scholar 

  14. O. Gurel-Gurevich, A. Nachmias, Recurrence of planar graph limits. Ann. Math. 177, 761–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Gamburd, E. Makover, On the genus of a random Riemann surface, in Complex Manifolds and Hyperbolic Geometry, Guanajuato, 2001. Contemporary Mathematics, vol. 311 (American Mathematical Society, Providence, 2002), pp. 133–140

    Google Scholar 

  16. L. Guth, H. Parlier, R. Young, Pants decompositions of random surfaces. Geom. Funct. Anal. 21(5), 1069–1090 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Z.-X. He, O. Schramm, Hyperbolic and parabolic packings. Discrete Comput. Geom. 14(2), 123–149 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. G.L. Miller, S.-H. Teng, W. Thurston, S.A. Vavasis, Geometric separators for finite-element meshes. SIAM J. Sci. Comput. 19(2), 364–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Pansu, Packing a space into an other. (in preparation)

    Google Scholar 

  20. B. Virág, Anchored expansion and random walk. Geom. Funct. Anal. 10(6), 1588–1605 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Benjamini, I. (2013). Random Planar Geometry. In: Coarse Geometry and Randomness. Lecture Notes in Mathematics(), vol 2100. Springer, Cham. https://doi.org/10.1007/978-3-319-02576-6_6

Download citation

Publish with us

Policies and ethics