Skip to main content

Cohomology of Almost-Complex Manifolds

  • Chapter
  • First Online:
Cohomological Aspects in Complex Non-Kähler Geometry

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2095))

  • 1461 Accesses

Abstract

Let X be a differentiable manifold endowed with an almost-complex structure J. Note that if J is not integrable, then the Dolbeault cohomology is not defined. In this chapter, we are concerned with studying some subgroups of the de Rham cohomology related to the almost-complex structure: these subgroups have been introduced by T.-J. Li and W. Zhang in (Comm. Anal. Geom. 17(4):651–683, 2009), in order to study the relation between the compatible and the tamed symplectic cones on a compact almost-complex manifold, with the aim to throw light on a question by S.K. Donaldson, (Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 153–172, Question 2) (see Sect. 4.4.2), and it would be interesting to consider them as a sort of counterpart of the Dolbeault cohomology groups in the non-integrable (or at least in the non-Kähler) case, see Drǎghici et al. (Int. Math. Res. Not. IMRN 1:1–17, 2010, Lemma 2.15, Theorem 2.16). In particular, we are interested in studying when they let a splitting of the de Rham cohomology, and their relations with cones of metric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that, given \(K \in \mathrm{End}(\mathit{TX})\) such that \({K}^{2} = \mathrm{id}_{\mathit{TX}}\), one can define, by duality, an endomorphism \(K \in \mathrm{End}({T}^{{\ast}}X)\) such that \({K}^{2} = \mathrm{id}_{{T}^{{\ast}}X}\), and hence one gets a natural decomposition \({T}^{{\ast}}X ={ \left ({T}^{+}X\right )}^{{\ast}}\oplus {\left ({T}^{-}X\right )}^{{\ast}}\) into eigen-bundles. Extending \(K \in \mathrm{End}({T}^{{\ast}}X)\) to \(K \in \mathrm{End}\left ({\wedge }^{\bullet }X\right )\), one gets a decomposition of the bundle of differential -forms, for \(\ell\in \mathbb{N}\): more precisely,

    $$\displaystyle{{\wedge }^{\ell}X\; =\;\bigoplus _{p+q=\ell} \wedge _{+\,-}^{p,\,q}\,X\qquad \text{ where }\qquad \wedge _{ +\,-}^{p,\,q}\,X\;:=\; {\wedge }^{p}{\left ({T}^{+}X\right )}^{{\ast}}\otimes {\wedge }^{q}{\left ({T}^{-}X\right )}^{{\ast}}\;;}$$

    If the almost-D-complex structure K is integrable, then the exterior differential splits as

    $$\displaystyle{\mathrm{d}\; =\; \partial _{+} + \partial _{-}}$$

    where

    $$\displaystyle{\partial _{+}:=\pi _{\wedge _{+\,-}^{p+1,\,q}\,X}\circ \mathrm{d}: \wedge _{+\,-}^{p,\,q}\,X \rightarrow \wedge _{ +\,-}^{p+1,\,q}\,X\quad \text{ and }\quad \partial _{ -}:=\pi _{\wedge _{+\,-}^{p,\,q+1}\,X}\circ \mathrm{d}: \wedge _{+\,-}^{p,\,q}\,X \rightarrow \wedge _{ +\,-}^{p,\,q+1}\,X}$$

    (where \(\pi _{\wedge _{+\,-}^{r,\,s}\,X}: \wedge _{+\,-}^{\bullet,\,\bullet }\,X \rightarrow \wedge _{+\,-}^{r,\,s}\,X\) denotes the natural projection onto ∧+ − r, sX, for every \(r,s \in \mathbb{N}\)). In particular, the condition \({\mathrm{d}}^{2} = 0\) is rewritten as

    $$\displaystyle{\left \{\begin{array}{rcl} \partial _{+}^{2} & = & 0 \\ \partial _{+}\partial _{-} + \partial _{-}\partial _{+} & = & 0 \\ \partial _{-}^{2} & = & 0 \end{array} \right.\;,}$$

    and hence one can define a D-complex counterpart of the Dolbeault cohomology by considering the cohomology of the differential complex \(\left (\wedge _{+\,-}^{\bullet,\,q}\,X,\,\partial _{+}\right )\) for every \(q \in \mathbb{N}\), that is,

    $$\displaystyle{H_{\partial _{+}}^{\bullet,\bullet }(X; \mathbb{R})\;:=\; \frac{\ker \partial _{+}} {\mathrm{im}\partial _{+}}\;.}$$
  2. 2.

    For example, [AR12, p. 533], consider two compact manifolds X + and X having the same dimension and consider the natural D-complex structure on X + × X , i.e., the D-complex structure given by the decomposition \(T\left ({X}^{+} \times {X}^{-}\right ) ={ \mathit{TX}}^{+}\, \oplus \,{\mathit{TX}}^{-}\), where \(K\lfloor _{{\mathit{TX}}^{\pm }} = \pm \mathrm{id}_{T\left ({X}^{+}\times {X}^{-}\right )}\), for ± ∈ { +, −} (recall that every D-complex manifold is locally of this form, see, e.g., [CMMS04, Proposition 2]); one has that the vector space \(H_{\partial _{+}}^{0,0}\left ({X}^{+} \times {X}^{-}\right ) \simeq {\mathcal{C}}^{\infty }\left ({X}^{-}\right )\) does not have finite dimension.

  3. 3.

    See [MT11, Ros12a] for more results concerning deformations of (almost-)D-complex structures.

  4. 4.

    For an analogous result in the setting of almost-D-complex structures in the sense of F. R. Harvey and H. B. Lawson, see [AR12, Proposition 1.4]; for an analogous result in the setting of symplectic structures, see [AT12b, Proposition 2.4].

  5. 5.

    For an analogous result in the setting of almost-D-complex structures in the sense of F.R. Harvey and H.B. Lawson, see [AR12, Lemma 2.3]; for an analogous result in the setting of symplectic structures, see [AT12b, Lemma 3.2].

  6. 6.

    For analogous results in the context of almost-D-complex structures in the sense of F. R. Harvey and H. B. Lawson, see [AR12, Proposition 2.4]; for analogous results in the context of symplectic structures, see [AT12b, Proposition 3.3]; compare also with [FT10, Theorem 3.4], by A. M. Fino and A. Tomassini, for almost-complex structures.

  7. 7.

    I would like to thank Weiyi Zhang for having let me notice this fact.

References

  1. L. Alessandrini, G. Bassanelli, Small deformations of a class of compact non-Kähler manifolds. Proc. Am. Math. Soc. 109(4), 1059–1062 (1990)

    MathSciNet  MATH  Google Scholar 

  2. L. Alessandrini, G. Bassanelli, Compact p-Kähler manifolds. Geom. Dedicata 38(2), 199–210 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Auslander, L.W. Green, F.J. Hahn, Flows on Homogeneous Spaces, With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. Annals of Mathematics Studies, vol. 53 (Princeton University Press, Princeton, 1963)

    Google Scholar 

  4. M. Audin, J. Lafontaine (eds.), Holomorphic Curves in Symplectic Geometry. Progress in Mathematics, vol. 117 (Birkhäuser Verlag, Basel, 1994)

    Google Scholar 

  5. L. Alessandrini, Classes of compact non-Kähler manifolds. C. R. Math. Acad. Sci. Paris 349(19–20), 1089–1092 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Angella, F.A. Rossi, Cohomology of D-complex manifolds. Differ. Geom. Appl. 30(5), 530–547 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Angella, A. Tomassini, On cohomological decomposition of almost-complex manifolds and deformations. J. Symplectic Geom. 9(3), 403–428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Angella, A. Tomassini, On the cohomology of almost-complex manifolds. Int. J. Math. 23(2), 1250019, 25 (2012)

    Google Scholar 

  9. D. Angella, A. Tomassini, Symplectic manifolds and cohomological decomposition. J. Symplectic Geom., arXiv:1211.2565v1 [math.SG] (2012 to appear)

    Google Scholar 

  10. D. Angella, A. Tomassini, W. Zhang, On cohomological decomposition of almost-Kähler structures. Proc. Am. Math. Soc., arXiv:1211.2928v1 [math.DG] (2012 to appear)

    Google Scholar 

  11. F.A. Belgun, On the metric structure of non-Kähler complex surfaces. Math. Ann. 317(1), 1–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Buzano, A. Fino, L. Vezzoni, The Calabi-Yau equation for T 2-bundles over \({\mathbb{T}}^{2}\): the non-Lagrangian case. Rend. Semin. Mat. Univ. Politec. Torino 69(3), 281–298 (2011)

    MathSciNet  Google Scholar 

  13. Ch. Benson, C.S. Gordon, Kähler and symplectic structures on nilmanifolds. Topology 27(4), 513–518 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ch. Benson, C.S. Gordon, Kähler structures on compact solvmanifolds. Proc. Am. Math. Soc. 108(4), 971–980 (1990)

    MathSciNet  MATH  Google Scholar 

  15. W.P. Barth, K. Hulek, C.A.M. Peters, A. Van de Ven, Compact Complex Surfaces, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4 (Springer, Berlin, 2004)

    Google Scholar 

  16. J.-M. Bismut, A local index theorem for non-Kähler manifolds. Math. Ann. 284(4), 681–699 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.-L. Brylinski, A differential complex for Poisson manifolds. J. Differ. Geom. 28(1), 93–114 (1988)

    MathSciNet  MATH  Google Scholar 

  18. N. Buchdahl, On compact Kähler surfaces. Ann. Inst. Fourier (Grenoble) 49(1), 287–302 (1999)

    Google Scholar 

  19. E. Calabi, On Kähler manifolds with vanishing canonical class, in Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz (Princeton University Press, Princeton, 1957), pp. 78–89

    Google Scholar 

  20. V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets. J. High Energy Phys. 3(028), 73 pp. (2004) (electronic)

    Google Scholar 

  21. L.C. de Andrés, M. Fernández, M. de León, J.J. Mencía, Some six-dimensional compact symplectic and complex solvmanifolds. Rend. Mat. Appl. (7) 12(1), 59–67 (1992)

    Google Scholar 

  22. P. de Bartolomeis, F. Meylan, Intrinsic deformation theory of CR structures. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (3), 459–494 (2010)

    Google Scholar 

  23. P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yau manifolds. Ann. Inst. Fourier (Grenoble) 56 (5), 1281–1296 (2006)

    Google Scholar 

  24. P. Deligne, Ph.A. Griffiths, J. Morgan, D.P. Sullivan, Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Drǎghici, H. Leon, On 4-dimensional non-unimodular symplectic Lie algebras, preprint, 2013

    Google Scholar 

  26. T. Drǎghici, T.-J. Li, W. Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds. Int. Math. Res. Not. IMRN 2010(1), 1–17 (2010)

    Google Scholar 

  27. T. Drǎghici, T.-J. Li, W. Zhang, On the J-anti-invariant cohomology of almost complex 4-manifolds. Q. J. Math. 64(1), 83–111 (2013)

    Article  MathSciNet  Google Scholar 

  28. T. Drǎghici, T.-J. Li, W. Zhang, Geometry of tamed almost complex structures on 4-dimensional manifolds, in Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Studies in Advanced Mathematics, 51, pt. 1, vol. 2 (American Mathematical Society, Providence, 2012), pp. 233–251

    Google Scholar 

  29. S.K. Donaldson, Two-forms on four-manifolds and elliptic equations, Inspired by S.S. Chern, in Nankai Tracts Mathematics, vol. 11 (World Scientific Publishing, Hackensack, 2006), pp. 153–172

    Google Scholar 

  30. T. Drǎghici, W. Zhang, A note on exact forms on almost complex manifolds. Math. Res. Lett. 19(3), 691–697 (2012)

    Article  MathSciNet  Google Scholar 

  31. N. Enrietti, A. Fino, L. Vezzoni, Tamed symplectic forms and strong Kahler with torsion metrics. J. Symplectic Geom. 10(2), 203–224 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Fernández, M. de León, M. Saralegui, A six-dimensional compact symplectic solvmanifold without Kähler structures. Osaka J. Math. 33(1), 19–35 (1996)

    MathSciNet  MATH  Google Scholar 

  33. A. Fino, Y.Y. Li, S. Salamon, L. Vezzoni, The Calabi-Yau equation on 4-manifolds over 2-tori. Trans. Am. Math. Soc. 365(3), 1551–1575 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Fu, J. Li, S.-T. Yau, Balanced metrics on non-Kähler Calabi-Yau threefolds. J. Differ. Geom. 90(1), 81–129 (2012)

    MathSciNet  MATH  Google Scholar 

  35. M. Fernández, V. Muñoz, J.A. Santisteban, Cohomologically Kähler manifolds with no Kähler metrics. Int. J. Math. Math. Sci. 2003(52), 3315–3325 (2003)

    Article  MATH  Google Scholar 

  36. A. Fino, M. Parton, S. Salamon, Families of strong KT structures in six dimensions. Comment. Math. Helv. 79(2), 317–340 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Fino, A. Tomassini, On some cohomological properties of almost complex manifolds. J. Geom. Anal. 20(1), 107–131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Fu, S.-T. Yau, A note on small deformations of balanced manifolds. C. R. Math. Acad. Sci. Paris 349(13–14), 793–796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Gauduchon, Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285(5), A387–A390 (1977)

    MathSciNet  Google Scholar 

  40. A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123(1), 35–58 (1980)

    Google Scholar 

  41. M. Gromov, Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. K. Hasegawa, Minimal models of nilmanifolds. Proc. Am. Math. Soc. 106(1), 65–71 (1989)

    Article  MATH  Google Scholar 

  43. K. Hasegawa, A note on compact solvmanifolds with Kähler structures. Osaka J. Math. 43(1), 131–135 (2006)

    MathSciNet  MATH  Google Scholar 

  44. A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 8(2), 289–331 (1960)

    MathSciNet  MATH  Google Scholar 

  45. F.R. Harvey, H.B. Lawson Jr., An intrinsic characterization of Kähler manifolds. Invent. Math. 74(2), 169–198 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. R.K. Hind, C. Medori, A. Tomassini, On non-pure forms on almost complex manifolds. Proc. Am. Math. Soc. (2011 to appear)

    Google Scholar 

  47. D. Huybrechts, Complex Geometry. Universitext (Springer, Berlin, 2005)

    MATH  Google Scholar 

  48. K. Kodaira, On the structure of compact complex analytic surfaces. I. Am. J. Math. 86, 751–798 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  49. K. Kodaira, D.C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. (2) 71(1), 43–76 (1960)

    Google Scholar 

  50. A. Lamari, Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble) 49(1, vii, x), 263–285 (1999)

    Google Scholar 

  51. J. Lee, Family Gromov-Witten invariants for Kähler surfaces. Duke Math. J. 123(1), 209–233 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Lejmi, Stability under deformations of extremal almost-Kähler metrics in dimension 4. Math. Res. Lett. 17(4), 601–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Y. Lin, Symplectic harmonic theory and the Federer-Fleming deformation theorem, arXiv:1112.2442v2 [math.SG], 2013

    Google Scholar 

  54. T.-J. Li, A. Tomassini, Almost Kähler structures on four dimensional unimodular Lie algebras. J. Geom. Phys. 62 (7), 1714–1731 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds. Commun. Anal. Geom. 17(4), 651–683 (2009)

    Article  MATH  Google Scholar 

  56. T.-J. Li, W. Zhang, J-symplectic cones of rational four manifolds, preprint, 2011

    Google Scholar 

  57. A.I. Mal’tsev, On a class of homogeneous spaces. Izv. Akad. Nauk SSSR Ser. Mat. 13, 9–32 (1949). Translation in Am. Math. Soc. Translation 1951(39), 33 pp. (1951)

    Google Scholar 

  58. M.L. Michelsohn, On the existence of special metrics in complex geometry. Acta Math. 149(3–4), 261–295 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Milnor, Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  60. Y. Miyaoka, Kähler metrics on elliptic surfaces. Proc. Jpn. Acad. 50(8), 533–536 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  61. C. Maclaughlin, H. Pedersen, Y.S. Poon, S. Salamon, Deformation of 2-step nilmanifolds with abelian complex structures. J. Lond. Math. Soc. (2) 73(1), 173–193 (2006)

    Google Scholar 

  62. M. Migliorini, A. Tomassini, Local calibrations of almost complex structures. Forum Math. 12(6), 723–730 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  63. C. Medori, A. Tomassini, On small deformations of paracomplex manifolds. J. Noncommut. Geom. 5(4), 507–522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. I. Nakamura, Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, 85–112 (1975)

    MATH  Google Scholar 

  65. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. (2) 59, 531–538 (1954)

    Google Scholar 

  66. Th. Peternell, Algebraicity criteria for compact complex manifolds. Math. Ann. 275(4), 653–672 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  67. D. Popovici, Limits of projective manifolds under holomorphic deformations, arXiv:0910.2032v1 [math.AG], 2009

    Google Scholar 

  68. D. Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics. Invent. Math., 1–20 (2013) (English), Online First, http://dx.doi.org/10.1007/s00222-013-0449-0

  69. S. Rollenske, The Frölicher spectral sequence can be arbitrarily non-degenerate. Math. Ann. 341(3), 623–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  70. F.A. Rossi, On deformations of D-manifolds and CR D-manifolds. J. Geom. Phys. 62(2), 464–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. F.A. Rossi, D-complex structures on manifolds: cohomological properties and deformations, Ph.D. Thesis, Università di Milano Bicocca, 2013, http://hdl.handle.net/10281/41976

  72. A. Silva, \(\partial \overline{\partial }\)-closed positive currents and special metrics on compact complex manifolds, in Complex Analysis and Geometry (Trento, 1993). Lecture Notes in Pure and Applied Mathematics, vol. 173 (Marcel Dekker, New York, 1996), pp. 377–441

    Google Scholar 

  73. Y.T. Siu, Every K3 surface is Kähler. Invent. Math. 73(1), 139–150 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  74. J. Streets, G. Tian, A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. IMRN 2010(16), 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  75. D.P. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math. 36(1), 225–255 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  76. C.H. Taubes, The Seiberg-Witten and Gromov invariants. Math. Res. Lett. 2(2), 221–238 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  77. C.H. Taubes, Tamed to compatible: symplectic forms via moduli space integration. J. Symplectic Geom. 9(2), 161–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Tomassini, Some examples of non calibrable almost complex structures. Forum Math. 14(6), 869–876 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  79. A. Tomasiello, Reformulating supersymmetry with a generalized Dolbeault operator. J. High Energy Phys. 2, 010, 25 (2008)

    Google Scholar 

  80. V. Tosatti, B. Weinkove, The Calabi-Yau equation on the Kodaira-Thurston manifold. J. Inst. Math. Jussieu 10 (2), 437–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. V. Tosatti, B. Weinkove, The Calabi-Yau equation, symplectic forms and almost complex structures, in Geometry and Analysis. No. 1, Advanced Lectures in Mathematics (ALM), vol. 17 (International Press, Somerville, 2011), pp. 475–493

    Google Scholar 

  82. V. Tosatti, B. Weinkove, S.-T. Yau, Taming symplectic forms and the Calabi-Yau equation. Proc. Lond. Math. Soc. (3) 97 (2), 401–424 (2008)

    Google Scholar 

  83. L.-S. Tseng, S.-T. Yau, Cohomology and Hodge theory on symplectic manifolds: I. J. Differ. Geom. 91(3), 383–416 (2012)

    MathSciNet  MATH  Google Scholar 

  84. C. Voisin, Théorie de Hodge et géométrie algébrique complexe, in Cours Spécialisés [Specialized Courses], vol. 10 (Société Mathématique de France, Paris, 2002)

    Google Scholar 

  85. H.-C. Wang, Complex parallisable manifolds. Proc. Am. Math. Soc. 5(5), 771–776 (1954)

    Article  MATH  Google Scholar 

  86. A. Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267 (Hermann, Paris, 1958)

    Google Scholar 

  87. B. Weinkove, The Calabi-Yau equation on almost-Kähler four-manifolds. J. Differ. Geom. 76(2), 317–349 (2007)

    MathSciNet  MATH  Google Scholar 

  88. C.-C. Wu, On the geometry of superstrings with torsion, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.), Harvard University, 2006

    Google Scholar 

  89. D. Yan, Hodge structure on symplectic manifolds. Adv. Math. 120(1), 143–154 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  90. S.-T. Yau, Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74(5), 1798–1799 (1977)

    Article  MATH  Google Scholar 

  91. S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  92. W. Zhang, From Taubes currents to almost Kähler forms. Math. Ann. 356(3), 969–978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angella, D. (2014). Cohomology of Almost-Complex Manifolds. In: Cohomological Aspects in Complex Non-Kähler Geometry. Lecture Notes in Mathematics, vol 2095. Springer, Cham. https://doi.org/10.1007/978-3-319-02441-7_4

Download citation

Publish with us

Policies and ethics