Skip to main content

Cohomology of Complex Manifolds

  • Chapter
  • First Online:
Cohomological Aspects in Complex Non-Kähler Geometry

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2095))

  • 1504 Accesses

Abstract

In this chapter, we study cohomological properties of compact complex manifolds. In particular, we are concerned with studying the Bott-Chern cohomology, which, in a sense, constitutes a bridge between the de Rham cohomology and the Dolbeault cohomology of a complex manifold.In Sect. 2.1, we recall some definitions and results on the Bott-Chern and Aeppli cohomologies, see, e.g., Schweitzer (Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 [math.AG], 2007), and on the \(\partial \overline{\partial }\) -Lemma, referring to Deligne et al. (Invent. Math. 29(3):245–274, 1975). In Sect. 2.2, we provide an inequality à la Frölicher for the Bott-Chern cohomology, Theorem 2.13, which also allows to characterize the validity of the \(\partial \overline{\partial }\) -Lemma in terms of the dimensions of the Bott-Chern cohomology groups, Theorem 2.14; the proof of such inequality is based on two exact sequences, firstly considered by J. Varouchas in (Propriétés cohomologiques d’une classe de variétés analytiques complexes compactes, Séminaire d’analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984, Lecture Notes in Math., vol. 1198, Springer, Berlin, 1986, pp. 233–243). Finally, in Appendix: Cohomological Properties of Generalized Complex Manifolds, we consider how to extend such results to the symplectic and generalized complex contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We recall that a proper holomorphic map f: X → Y from the complex manifold X to the complex manifold Y is called a modification if there exists a nowhere dense closed analytic subset B ⊂ Y such that \(f\lfloor _{X\setminus {f}^{-1}(B)}: X\setminus {f}^{-1}(B) \rightarrow Y \setminus B\) is a biholomorphism.

  2. 2.

    We get actually that, for every \(k \in \mathbb{N}\), it holds \(h_{\mathit{BC}}^{k} + h_{A}^{k} = 2\,h_{\overline{\partial }}^{k} + {a}^{k} + {f}^{k}\).

  3. 3.

    More in general, given a compact manifold X endowed with a Poisson bracket \(\left \{\cdot,\cdot \cdot \right \}\), and denoted by G the Poisson tensor associated to \(\left \{\cdot,\cdot \cdot \right \}\), by following J.-L. Koszul, [Kos85], one can define \(\delta:= \left [\iota _{G},\,\mathrm{d}\right ] \in {\mathrm{End}}^{-1}\left ({\wedge }^{\bullet }X\right )\). One has that δ 2 = 0 and \(\left [\mathrm{d},\delta \right ] = 0\), [Kos85, pp. 266, 265], see also [Bry88, Proposition 1.2.3, Theorem 1.3.1].

    It holds that, on any compact Poisson manifold, the first spectral sequence \({^\prime}E_{r}^{\bullet,\bullet }\) associated to the canonical double complex \(\left ({\mathrm{Doub}}^{\bullet,\bullet } {\wedge }^{\bullet }X,\,\mathrm{d} \otimes _{\mathbb{R}}\mathrm{id},\,\delta \otimes _{\mathbb{R}}\beta \right )\) degenerates at the first level, [FIdL98, Theorem 2.5].

    On the other hand, an example of a compact Poisson manifold (more precisely, of a nilmanifold endowed with a co-symplectic structure) such that the second spectral sequence \({^\prime}{^\prime}E_{r}^{\bullet,\bullet }\left ({\mathrm{Doub}}^{\bullet,\bullet } {\wedge }^{\bullet }X,\,\mathrm{d} \otimes _{\mathbb{R}}\mathrm{id},\,\delta \otimes _{\mathbb{R}}\beta \right )\) does not degenerate at the first level has been provided by M. Fernández, R. Ibáñez, and M. de León, [FIdL98, Theorem 5.1].

    In fact, on a compact 2n-dimensional manifold X endowed with a symplectic structure ω, the symplectic-⋆-operator \(\star _{\omega }: {\wedge }^{\bullet }X \rightarrow {\wedge }^{2n-\bullet }X\) induces the isomorphism \(\star _{\omega }: {^\prime}E_{r}^{\bullet _{1},\bullet _{2}}\stackrel{\simeq }{\rightarrow }{^\prime}{^\prime}E_{r}^{\bullet _{2},2n+\bullet _{1}}\), [FIdL98, Theorem 2.9].

  4. 4.

    We recall that the symplectic cohomologies, introduced by L.-S. Tseng and S.-T. Yau in [TY12a, Sect. 3], are defined as

    $$\displaystyle\begin{array}{rcl} H_{\mathrm{d}+{\mathrm{d}}^{\varLambda }}^{\bullet }(X; \mathbb{R})\;:=\; H_{\left (\mathrm{d},{\mathrm{d}}^{\varLambda };\mathrm{d}{\mathrm{d}}^{\varLambda }\right )}^{\bullet }({\wedge }^{\bullet }X)\;:=\; \frac{\ker \left (\mathrm{d} +{ \mathrm{d}}^{\varLambda }\right )} {\mathrm{im}\mathrm{d}{\mathrm{d}}^{\varLambda }} & & {}\\ \end{array}$$

    and

    $$\displaystyle\begin{array}{rcl} H_{\mathrm{d}{\mathrm{d}}^{\varLambda }}^{\bullet }(X; \mathbb{R})\;:=\; H_{\left (\mathrm{d}{\mathrm{d}}^{\varLambda };\mathrm{d},{\mathrm{d}}^{\varLambda }\right )}^{\bullet }\left ({\wedge }^{\bullet }X\right )\;:=\; \frac{\ker \mathrm{d}{\mathrm{d}}^{\varLambda }} {\mathrm{im}\mathrm{d} + \mathrm{im}{\mathrm{d}}^{\varLambda }}\;.& & {}\\ \end{array}$$

References

  1. L. Alessandrini, G. Bassanelli, The class of compact balanced manifolds is invariant under modifications, in Complex Analysis and Geometry (Trento, 1993). Lecture Notes in Pure and Applied Mathematics, vol. 173 (Marcel Dekker, New York, 1996), pp. 1–17

    Google Scholar 

  2. M. Abate, Annular bundles. Pac. J. Math. 134(1), 1–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Aeppli, On the cohomology structure of Stein manifolds, in Proceedings of a Conference on Complex Analysis, Minneapolis, MN, 1964 (Springer, Berlin, 1965), pp. 58–70

    Google Scholar 

  4. D. Angella, H. Kasuya, Bott-chern cohomology of solvmanifolds, arXiv: 1212.5708v3 [math.DG], 2012

    Google Scholar 

  5. D. Angella, H. Kasuya, Cohomologies of deformations of solvmanifolds and closedness of some properties, arXiv:1305.6709v1 [math.CV], 2013

    Google Scholar 

  6. D. Angella, H. Kasuya, Symplectic Bott-Chern cohomology of solvmanifolds. arXiv:1308.4258v1 [math.SG] (2013)

    Google Scholar 

  7. A. Andreotti, F. Norguet, Cycles of algebraic manifolds and \(\partial \bar{\partial }\)-cohomology. Ann. Scuola Norm. Sup. Pisa (3) 25(1), 59–114 (1971)

    Google Scholar 

  8. D. Angella, A. Tomassini, Inequalities à la Frölicher and cohomological decompositions, preprint, 2013

    Google Scholar 

  9. D. Angella, A. Tomassini, On the \(\partial \overline{\partial }\)-Lemma and Bott-Chern cohomology. Invent. Math. 192(1), 71–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Angella, A. Tomassini, W. Zhang, On cohomological decomposition of almost-Kähler structures. Proc. Am. Math. Soc., arXiv:1211.2928v1 [math.DG] (2012 to appear)

    Google Scholar 

  11. R. Bott, S.S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math. 114(1), 71–112 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. W.P. Barth, K. Hulek, C.A.M. Peters, A. Van de Ven, Compact Complex Surfaces, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4 (Springer, Berlin, 2004)

    Google Scholar 

  13. B. Bigolin, Gruppi di Aeppli. Ann. Sc. Norm. Super. Pisa (3) 23(2), 259–287 (1969)

    Google Scholar 

  14. B. Bigolin, Osservazioni sulla coomologia del \(\partial \bar{\partial }\). Ann. Sc. Norm. Super. Pisa (3) 24(3), 571–583 (1970)

    Google Scholar 

  15. J.-M. Bismut, A local index theorem for non-Kähler manifolds. Math. Ann. 284(4), 681–699 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.-M. Bismut, Hypoelliptic Laplacian and Bott-Chern cohomology, preprint (Orsay), 2011

    Google Scholar 

  17. J.-M. Bismut, Laplacien hypoelliptique et cohomologie de Bott-Chern. C. R. Math. Acad. Sci. Paris 349(1–2), 75–80 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. École Norm. Sup. (4) 37(1), 45–76 (2004)

    Google Scholar 

  19. J.-L. Brylinski, A differential complex for Poisson manifolds. J. Differ. Geom. 28(1), 93–114 (1988)

    MathSciNet  MATH  Google Scholar 

  20. N. Buchdahl, On compact Kähler surfaces. Ann. Inst. Fourier (Grenoble) 49(1), 287–302 (1999)

    Google Scholar 

  21. F. Campana, The class \(\mathcal{C}\) is not stable by small deformations. Math. Ann. 290(1), 19–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.R. Cavalcanti, New aspects of the dd c-lemma, Oxford University D. Phil Thesis, 2005, arXiv:math/0501406 [math.DG]

    Google Scholar 

  23. G.R. Cavalcanti, The decomposition of forms and cohomology of generalized complex manifolds. J. Geom. Phys. 57(1), 121–132 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Connes, Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62, 257–360 (1985)

    MathSciNet  Google Scholar 

  25. M. Ceballos, A. Otal, L. Ugarte, R. Villacampa, Classification of complex structures on 6-dimensional nilpotent Lie algebras, arXiv:1111.5873v3 [math.DG], 2011

    Google Scholar 

  26. J.-P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2012, Version of Thursday June 21, 2012

  27. P. Deligne, Ph.A. Griffiths, J. Morgan, D.P. Sullivan, Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Fernández, R. Ibáñez, M. de León, The canonical spectral sequences for Poisson manifolds. Israel J. Math. 106, 133–155 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Fu, J. Li, S.-T. Yau, Balanced metrics on non-Kähler Calabi-Yau threefolds. J. Differ. Geom. 90(1), 81–129 (2012)

    MathSciNet  MATH  Google Scholar 

  30. A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Natl. Acad. Sci. USA 41(9), 641–644 (1955)

    Article  MATH  Google Scholar 

  31. A. Fujiki, On automorphism groups of compact Kähler manifolds. Invent. Math. 44(3), 225–258 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Gauduchon, Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285(5), A387–A390 (1977)

    MathSciNet  Google Scholar 

  33. Th.G. Goodwillie, Cyclic homology, derivations, and the free loopspace. Topology 24(2), 187–215 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Hironaka, An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures. Ann. Math. (2) 75(1), 190–208 (1962)

    Google Scholar 

  35. J. Jost, S.-T. Yau, A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170(2), 221–254 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Jost, S.-T. Yau, Correction to: “A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry” [Acta Math. 170(2), 221–254 (1993); MR1226528 (94g:58053)]. Acta Math. 173(2), 307 (1994)

    Google Scholar 

  37. H. Kasuya, Hodge symmetry and decomposition on non-Kähler solvmanifolds, arXiv:1109.5929v4 [math.DG], 2011

    Google Scholar 

  38. H. Kasuya, Degenerations of the Frölicher spectral sequences of solvmanifolds, arXiv:1210.2661v2 [math.DG], 2012

    Google Scholar 

  39. K. Kodaira, On the structure of compact complex analytic surfaces. I. Am. J. Math. 86, 751–798 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  40. K. Kodaira, Complex Manifolds and Deformation of Complex Structures. English edn. Classics in Mathematics (Springer, Berlin, 2005). Translated from the 1981 Japanese original by Kazuo Akao

    Google Scholar 

  41. R. Kooistra, Regulator currents on compact complex manifolds, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.), University of Alberta, Canada, 2011

    Google Scholar 

  42. J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque (1985), no. Numero Hors Serie. The mathematical heritage of Élie Cartan (Lyon, 1984), 257–271

    Google Scholar 

  43. K. Kodaira, D.C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. (2) 71(1), 43–76 (1960)

    Google Scholar 

  44. A. Lamari, Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble) 49(1, vii, x), 263–285 (1999)

    Google Scholar 

  45. C. LeBrun, Y.S. Poon, Twistors, Kähler manifolds, and bimeromorphic geometry. II. J. Am. Math. Soc. 5(2), 317–325 (1992)

    MathSciNet  MATH  Google Scholar 

  46. L. Lussardi, A Stampacchia-type inequality for a fourth-order elliptic operator on Kähler manifolds and applications. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 21 (2), 159–173 (2010)

    Google Scholar 

  47. M. Macrì, Cohomological properties of unimodular six dimensional solvable Lie algebras. Differ. Geom. Appl. 31(1), 112–129 (2013)

    Article  MATH  Google Scholar 

  48. M.L. Michelsohn, On the existence of special metrics in complex geometry. Acta Math. 149(3–4), 261–295 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Miyaoka, Kähler metrics on elliptic surfaces. Proc. Jpn. Acad. 50(8), 533–536 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  50. B.G. Moǐšezon, On n-dimensional compact complex manifolds having n algebraically independent meromorphic functions. I, II, III. Izv. Akad. Nauk SSSR Ser. Mat. 30(1, 2, 3), 133–174, 345–386, 621–656 (1966). Translation in Am. Math. Soc., Transl., II. Ser. 63, 51–177 (1967)

    Google Scholar 

  51. I. Nakamura, Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, 85–112 (1975)

    MATH  Google Scholar 

  52. S. Ofman, Résultats sur les dd″ et d″-cohomologies. Application à l’intégration sur les cycles analytiques. I. C. R. Acad. Sci. Paris Sér. I Math. 300(2), 43–45 (1985)

    MathSciNet  MATH  Google Scholar 

  53. S. Ofman, Résultats sur les dd″ et d″-cohomologies. Application à l’intégration sur les cycles analytiques. II. C. R. Acad. Sci. Paris Sér. I Math. 300(5), 133–135 (1985)

    MathSciNet  MATH  Google Scholar 

  54. S. Ofman, dd″,  d″-cohomologies et intégration sur les cycles analytiques. Invent. Math. 92(2), 389–402 (1988)

    Google Scholar 

  55. D. Popovici, Limits of projective manifolds under holomorphic deformations, arXiv:0910.2032v1 [math.AG], 2009

    Google Scholar 

  56. D. Popovici, Limits of Moishezon manifolds under holomorphic deformations, arXiv:1003.3605v1 [math.AG], 2010

    Google Scholar 

  57. D. Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics. Invent. Math., 1–20 (2013) (English), Online First, http://dx.doi.org/10.1007/s00222-013-0449-0

  58. M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 [math.AG], 2007

    Google Scholar 

  59. Y.T. Siu, Every K3 surface is Kähler. Invent. Math. 73(1), 139–150 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Tomasiello, Reformulating supersymmetry with a generalized Dolbeault operator. J. High Energy Phys. 2, 010, 25 (2008)

    Google Scholar 

  61. L.-S. Tseng, S.-T. Yau, Generalized cohomologies and supersymmetry, arXiv:1111.6968v1 [hep-th], 2011

    Google Scholar 

  62. L.-S. Tseng, S.-T. Yau, Cohomology and Hodge theory on symplectic manifolds: I. J. Differ. Geom. 91(3), 383–416 (2012)

    MathSciNet  MATH  Google Scholar 

  63. J. Varouchas, Propriétés cohomologiques d’une classe de variétés analytiques complexes compactes, Séminaire d’analyse. P. Lelong-P. Dolbeault-H. Skoda, Années 1983/1984. Lecture Notes in Mathematics, vol. 1198 (Springer, Berlin, 1986), pp. 233–243

    Google Scholar 

  64. C. Voisin, Théorie de Hodge et géométrie algébrique complexe, in Cours Spécialisés [Specialized Courses], vol. 10 (Société Mathématique de France, Paris, 2002)

    Google Scholar 

  65. R.O. Wells Jr., Comparison of de Rham and Dolbeault cohomology for proper surjective mappings. Pac. J. Math. 53(1), 281–300 (1974)

    Article  MATH  Google Scholar 

  66. C.-C. Wu, On the geometry of superstrings with torsion, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.), Harvard University, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angella, D. (2014). Cohomology of Complex Manifolds. In: Cohomological Aspects in Complex Non-Kähler Geometry. Lecture Notes in Mathematics, vol 2095. Springer, Cham. https://doi.org/10.1007/978-3-319-02441-7_2

Download citation

Publish with us

Policies and ethics