Skip to main content

Physical and Optical Properties of Laser Glass

  • Chapter
  • First Online:
Fundamentals of Fiber Lasers and Fiber Amplifiers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 181))

  • 3229 Accesses

Abstract

Glass is an amorphic material that is highly isotropic and demonstrates a high degree of homogeneity. Unlike crystals, glass molecules are disordered but are rigidly bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Pellé, N. Gardant, F. Auzel, Effect of excited-state population density on nonradiative multiphonon relaxation rates of rare-earth ions. J. Opt. Soc. Am. B 15, 667–679 (1998)

    Article  Google Scholar 

  2. C.B. Layne, W.H. Lowdermilk, M.J. Weber, Multi-phonon relaxation of rare-earth ions in oxide glasses. Phys.Rev. B, 16(1), 10–20 (1977)

    Google Scholar 

  3. M.J. Weber, The role of lanthanides in optical materials. American Ceramic Society annual meeting and exposition, Cincinnati, OH, USA, 1–5 May 1995, pp. 1–18

    Google Scholar 

  4. R. Reisfeld, Spectroscopy of Solid-State Type Laser Materials, ed. by B. DiBartolo (Plenum Press, New York, 1987), pp. 343–396

    Google Scholar 

  5. C.B. Layne, M.J. Weber, Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass. Phys. Rev. B16, 3259–3261 (1977)

    Article  Google Scholar 

  6. D. Lezal, J. Pedlikova, J. Zavadil, Chalcogenide glasses for optical and photonics applications. Calcogenide Lett. 1(1), 11–15 (2004)

    Google Scholar 

  7. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, T. Handa, Aluminium or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J. Appl. Phys. 59(10), 3430–3436 (1986)

    Article  Google Scholar 

  8. S.P. Craig-Ryan, J.F. Massicott, M. Wilson, B.J. Ainslie, R. Wyatt, Optical study of low concentration Er3+ fibers for efficient power amplifiers, in Proceeding of ECOC’90, vol. 1 (OSA, Washington DC, USA, 1990), pp. 571–574

    Google Scholar 

  9. M. Naftaly, S. Shen, A. Jha, Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm. Appl. Opt. 39, 4979–4984 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii (Vartan) Ter-Mikirtychev .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ter-Mikirtychev, V.(. (2014). Physical and Optical Properties of Laser Glass. In: Fundamentals of Fiber Lasers and Fiber Amplifiers. Springer Series in Optical Sciences, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-319-02338-0_3

Download citation

Publish with us

Policies and ethics