Skip to main content

Inserting a Curve into an Existing Two Dimensional Unstructured Mesh

  • Conference paper
Proceedings of the 22nd International Meshing Roundtable

Abstract

In this work, a new method for inserting a curve as an internal boundary into an existing mesh is developed. The curve insertion is done with minimal adjustment to the original topology while maintaining the original sizing of the mesh. The curve is discretized by initially placing vertices, defining a length scale at every location on the curve based on the local underlying mesh, and equidistributing length scale along the curve between vertices. This results in the final discretization being spaced in a way that is consistent with the initial mesh. The new points are then inserted into the mesh and local refinement is performed, resulting in a final mesh containing a representation of the curve while preserving mesh quality. The advantage of this algorithm over generating a new mesh from scratch is in allowing for the majority of existing simulation data to be preserved, and not have to be interpolated onto the new mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weatherill, N.P., Thompson, J.F., Soni, B.K. (eds.): Handbook of Grid Generation. CRC Press (1999)

    Google Scholar 

  2. Cheng, S.W., Dey, T.K., Shewchuk, J.R.: Delaunay Mesh Generation. Chapman & Hall (2012)

    Google Scholar 

  3. Boivin, C., Ollivier-Gooch, C.F.: Guaranteed-quality triangular mesh generation for domains with curved boundaries 55(10), 1185–1213 (2002)

    Google Scholar 

  4. Li, X., Shephard, M., Beall, M.: Accounting for curved domains in mesh adaptation 58, 246–276 (2003)

    Google Scholar 

  5. Gosselin, S.: Delaunay Refinement Mesh Generation of Curve-bounded Domains. Ph. D. thesis (2009)

    Google Scholar 

  6. Trepanier, J.-Y., Paraschivoiu, M., Reggio, M., Camarero, R.: A conservative shock fitting method on unstructured grids. Journal of Computational Physics 126(2), 421–433 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Paciorri, R., Bonfiglioli, A.: A shock-fitting technique for 2d unstructured grids. Computers & Fluids 38(3), 715–726 (2009)

    Article  MathSciNet  Google Scholar 

  8. Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (mmpdes) based on the equidistribution principle. SIAM Journal on Numerical Analysis 31(3), 709–730 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zegeling, P.: Moving grid techniques. In: Handbook of Grid Generation, pp. 37-1–37-18 (1999)

    Google Scholar 

  10. Stockie, J.M., Mackenzie, J.A., Russell, R.D.: A moving mesh method for one-dimensional hyperbolic conservation laws. SIAM Journal on Scientific Computing 22(5), 1791–1813 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao, W., Huang, W., Russell, R.D.: A moving mesh method based on the geometric conservation law. SIAM Journal on Scientific Computing 24(1), 118–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shewchuk, J.R.: Delaunay Refinement Mesh Generation. Ph. D. thesis, School of Computer Science, Carnegie Mellon University (May 1997)

    Google Scholar 

  13. Ollivier-Gooch, C.: Grummp version 0.5.0 user’s guide. Tech. rep., Department of Mechanical Engineering, The University of British Columbia (2010)

    Google Scholar 

  14. Ong, B., Russell, R., Ruuth, S.: An h-r moving mesh method for one-dimensional time-dependent PDEs. In: Jiao, X., Weill, J.-C. (eds.) Proceedings of the 21st International Meshing Roundtable, vol. 123, pp. 39–54. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Ollivier-Gooch, C.F., Boivin, C.: Guaranteed-quality simplicial mesh generation with cell size and grading control 17(3), 269–286 (2001)

    Google Scholar 

  16. Freitag, L.A., Ollivier-Gooch, C.F.: Tetrahedral mesh improvement using swapping and smoothing 40(21), 3979–4002 (1997)

    Google Scholar 

  17. Cao, W., Huang, W., Russell, R.D.: Anr-adaptive finite element method based upon moving mesh PDEs. Journal of Computational Physics 149(2), 221–244 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crestel, B.: Moving meshes on general surfaces. Master’s thesis, Simon Fraser University (2011)

    Google Scholar 

  19. Pagnutti, D.: Anisotropic adaptation: Metrics and meshes. Master’s thesis (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Zaide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zaide, D.W., Ollivier-Gooch, C.F. (2014). Inserting a Curve into an Existing Two Dimensional Unstructured Mesh. In: Sarrate, J., Staten, M. (eds) Proceedings of the 22nd International Meshing Roundtable. Springer, Cham. https://doi.org/10.1007/978-3-319-02335-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02335-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02334-2

  • Online ISBN: 978-3-319-02335-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics