Skip to main content

How to Generate the Input Current for Exciting a Spiking Neural Model Using the Cuckoo Search Algorithm

  • Chapter
  • First Online:
Cuckoo Search and Firefly Algorithm

Part of the book series: Studies in Computational Intelligence ((SCI,volume 516))

Abstract

Spiking neurons are neural models that try to simulate the behavior of biological neurons. This model generates a response (spikes or spike train) only when the model reaches a specific threshold. This response could be coded into a firing rate and perform a pattern classification task according to the firing rate generated with the input current. However, the input current must be carefully computed to obtain the desired behavior. In this paper, we describe how the Cuckoo Search algorithm can be used to train a spiking neuron and determine the best way to compute the input current for solving a pattern classification task. The accuracy of the methodology is tested using several pattern recognition problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A chaos synchronization-based dynamic vision model for image segmentation. 5, (2005)

    Google Scholar 

  2. Exploration of rank order coding with spiking neural networks for speech recognition. 4, (2005)

    Google Scholar 

  3. Abdull Hamed, H.N., Kasabov, N., Michlovský, Z., and Shamsuddin, S.M.: String pattern recognition using evolving spiking neural networks and quantum inspired particle swarm optimization. In: Proceedings of the 16th International Conference on Neural Information Processing. Part II, ICONIP ’09, LNCS, pp. 611–619. Springer-Verlag, Heidelberg (2009)

    Google Scholar 

  4. Balasubramanian, S., Panigrahi, S., Logue, C., Gu, H., Marchello, M.: Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification. J. Food Eng. 91(1), 91–98 (2009)

    Google Scholar 

  5. Baldwin, E.A., Bai, J., Plotto, A., Dea, S.: Electronic noses and tongues. Applications for the food and pharmaceutical industries. Sensors 11(5), 4744–4766 (2011)

    Google Scholar 

  6. Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A levy flight for light. Nature 453, 495–498 (2008)

    Google Scholar 

  7. Belatreche, A., Maguire, L.P., and McGinnity, T.M.: Pattern recognition with spiking neural networks and dynamic synapse. In: International FLINS Conference on Applied Computational Intelligence, pp. 205–210 (2004)

    Google Scholar 

  8. Bermak, A., Martinez, D.: A compact 3d vlsi classifier using bagging threshold network ensembles. IEEE Trans. Neural Netw., 14(5), 1097–1109 (2003)

    Google Scholar 

  9. Bohte, S.M., Kok, J.N., Poutre, H.L.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1–4), 17–37 (2002)

    Article  MATH  Google Scholar 

  10. Chen, H.T., Ng, K.T., Bermak, A., Law, M., Martinez, D.: Spike latency coding in biologically inspired microelectronic nose. IEEE Trans. Biomed. Circ. Syst., 5(2), 160–168 (2011)

    Google Scholar 

  11. Devroye, L., Györfi, L., Lugosi, G.: A probabilistic theory of pattern recognition. Springer, Heidelberg (1996)

    Google Scholar 

  12. Di Paolo, E.: Spike-timing dependent plasticity for evolved robots. Adapt. Behav., 10, 243–263 (2002)

    Google Scholar 

  13. Floreano, D., Zufferey, J.-C., Nicoud, J.-D.: From wheels to wings with evolutionary spiking neurons. Artif. Life, 11(1–2), 121–138 (2005)

    Google Scholar 

  14. Fu, J., Li, G., Qin, Y., Freeman, W.J.: A pattern recognition method for electronic noses based on an olfactory neural network. Sens. Actuators B: Chemical, 125(2), 489–497 (2007)

    Google Scholar 

  15. Garro, B., Sossa, H., and Vazquez, R.: Design of artificial neural networks using a modified particle swarm optimization algorithm. In: International Joint Conference on Neural Networks. IJCNN, pp. 938–945 (2009)

    Google Scholar 

  16. Garro, B.A., Sossa, H., and Vázquez, R.A.: Design of artificial neural networks using differential evolution algorithm. In: Proceedings of the 17th International Conference on Neural Information Processing: models and applications, Vol. Part II, pp. 201–208, ICONIP’10, LNCS, Springer-Verlag, Heidelberg (2010)

    Google Scholar 

  17. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Single Neurons, Populations. Cambridge University Press, Plasticity (2002)

    Google Scholar 

  18. Gomez-Chova, L., Calpe, J., Camps-Valls, G., Martin, J., Soria, E., Vila, J., Alonso-Chorda, L., Moreno, J.: Feature selection of hyperspectral data through local correlation and sffs for crop classification. In: Geoscience and Remote Sensing Symposium. IGARSS ’03. Proceedings. IEEE, International, vol. 1, pp. 555–557 (2003)

    Google Scholar 

  19. Haralick, R., Shanmugam, K., and Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern., SMC, 3(6): 610–621 (1973)

    Google Scholar 

  20. Hasselmo, M.E., Bodelón, C., Wyble, B.P.: A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817, April 2002

    Google Scholar 

  21. Hopfield, J.J., Brody, C.D.: What is a moment Cortical sensory integration over a brief interval. Proc. Natl. Acad. Sci., vol. 97 (25), 13919–13924, Dec 2000

    Google Scholar 

  22. Hu, M.-K.: Visual pattern recognition by moment invariants. IEEE Trans. Inform. Theory, 8(2), 179–187, Feb 1962

    Google Scholar 

  23. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw., 14(6), 1569–1572, Nov 2003

    Google Scholar 

  24. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw., 15(5), 1063–1070, Sept 2004

    Google Scholar 

  25. Izhikevich, E.M.: Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Computational Neurosci. (2007)

    Google Scholar 

  26. Jain, R., and Schunck, R.K.B.G.: Machine Vision. McGraw-Hill, New York (1995)

    Google Scholar 

  27. Karaboga, D., Akay, B., and Ozturk, C.: Artificial bee colony (abc) optimization algorithm for training feed-forward neural networks. In: Proceedings of the 4th International Conference on Modeling Decisions for Artificial Intelligence, MDAI ’07, LNCS, pp. 318–329, Springer-Verlag, Heidelberg (2007)

    Google Scholar 

  28. Karaboga, D., and Basturk, B.: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. In: IFSA (1)’07, LNCS, pp. 789–798 (2007)

    Google Scholar 

  29. Kennedy, J., and Eberhart, R.: Particle swarm optimization. In: Proceedings. IEEE Int. Conf. Neural Netw. (1995) vol. 4, pp. 1942–1948, Aug 2002

    Google Scholar 

  30. Maass, W., Graz, T.U.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671 (1997)

    Google Scholar 

  31. Murphy, P., Aha, D.: UCI Repository of machine learning databases. Technical report, University of California, Department of Information and Computer Science, Irvine, CA, USA (1994)

    Google Scholar 

  32. Nagy, G., Tolaba, J.: Nonsupervised crop classification through airborne multispectral observations. IBM J. Res. Dev. 16(2), 138–153 (1972)

    Google Scholar 

  33. Oh, E.H., Song, H.S., Park, T.H.: Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzym. Microb. Tech. 48(67), 427–437 (2011)

    Google Scholar 

  34. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66, Jan 1979

    Google Scholar 

  35. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution a practical approach to global optimization. Nat. Comput. Ser. Springer-Verlag, Berlin (2005)

    Google Scholar 

  36. Schwenker, F., Kestler, H.A., Palm, G.: Three learning phases for radial-basis-function networks. Neural Netw. 14(45), 439–458 (2001)

    Google Scholar 

  37. Senthilnath, J., Omkar, S.N., Mani, V., and Karnwal, N.: Hierarchical artificial immune system for crop stage classification. In: Annuals IEEE India Conference (INDICON), pp. 1–4 (2011)

    Google Scholar 

  38. Thorpe, S.J., Guyonneau, R., Guilbaud, N., Allegraud, J.-M., and VanRullen R.: Spikenet: real-time visual processing with one spike per neuron. Neurocomputing, 58–60:857–864 (2004). (Comput. Neurosci.: Trends Res. 2004)

    Google Scholar 

  39. Vazquez, R.: Izhikevich neuron model and its application in pattern recognition. Aust. J. Intell. Inf. Process. Syst. 11(1), 35–40 (2010)

    Google Scholar 

  40. Vazquez, R.: A computational approach for modeling the biological olfactory system during an odor discrimination task using spiking neuron. BMC Neurosci. 12(Suppl 1), p. 360 (2011)

    Google Scholar 

  41. Vazquez, R.: Training spiking neural models using cuckoo search algorithm. In: IEEE Congress on Evolutionary Computation (CEC), pp. 679–686 (2011)

    Google Scholar 

  42. Vazquez, R., and Cacho andn, A.: Integrate and fire neurons and their application in pattern recognition. In: 7th International Conference on Electrical Engineering Computing Science Automatic Control (CCE), pp. 424–428 (2010)

    Google Scholar 

  43. Vazquez, R., Sossa, H., Garro, B.: 3d object recognition based on some aspects of the infant vision system and associative memory. Cognitive Comput. 2, 86–96 (2010)

    Google Scholar 

  44. Vázquez R.A.: Pattern recognition using spiking neurons and firing rates. In: Proceedings of the 12th Ibero-American Conference on Advances Artificial Intelligence, IBERAMIA’10, LNAI, pp. 423–432, Springer-Verlag, Heidelberg (2010)

    Google Scholar 

  45. Vázquez, R.A., and Garro, B.A.: Training spiking neurons by means of particle swarm optimization. In: Proceedings of the Second International Conference on Advances in Swarm Intelligence, vol. Part I, ICSI’11, pp. 242–249. Springer-Verlag, Heidelberg (2011)

    Google Scholar 

  46. Vazquez Espinoza De Los Monteros, R.A., and Sossa Azuela, J. H.: A new associative model with dynamical synapses. Neural Process. Lett., 28:189–207, Dec 2008

    Google Scholar 

  47. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P., Stanley, H.E.: Optimizing the success of random searches. Nature 401, 911–914 (1999)

    Article  Google Scholar 

  48. Yang, X.-S.: 1-optimization and metaheuristic algorithms in engineering. Metaheuristics in water, geotechnical and transport engineering, pp. 1–23. Elsevier, Oxford (2013)

    Google Scholar 

  49. Yang, X.-S., and Deb, S.: Cuckoo search via levy flights. In: World Congress on Nature Biologically Inspired Computing, NaBIC, pp. 210–214 (2009)

    Google Scholar 

  50. Yin, Y., Yu, H., Zhang, H.: A feature extraction method based on wavelet packet analysis for discrimination of chinese vinegars using a gas sensors array. Sens. Actuators B: Chemical 134(2), 1005–1009 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank CONACYT-INEGI and Universidad La Salle for the economical support under grant number 187637 and I-061/12, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto A. Vazquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vazquez, R.A., Sandoval, G., Ambrosio, J. (2014). How to Generate the Input Current for Exciting a Spiking Neural Model Using the Cuckoo Search Algorithm. In: Yang, XS. (eds) Cuckoo Search and Firefly Algorithm. Studies in Computational Intelligence, vol 516. Springer, Cham. https://doi.org/10.1007/978-3-319-02141-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02141-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02140-9

  • Online ISBN: 978-3-319-02141-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics