Skip to main content

Implication of Porous TiO2 Nanoparticles in PEDOT:PSS Photovoltaic Devices

  • Chapter
  • First Online:
High-Efficiency Solar Cells

Abstract

Recent developments in the synthesis of mesoporous nanocrystalline titanium oxide (TiO2) have opened up several new opportunities in the construction of efficient photovoltaic (PV) cells. In this chapter, we describe principles involved in the construction of organic photovoltaic cell and the influence of the main parameters for the case of PEDOT:PSS polymers. At the outset different architectures of the PEDOT:PSS photovoltaics are described and later incorporation of the TiO2 nanoparticles in their architectures is carefully considered. A special attention is given to the technique of photovoltaic cell preparation and the basic principles of their functionality. A significant emphasis has been devoted to the current–voltage characteristics of photovoltaic cells, thus constructed with and without nanocrystalline TiO2, as well as to the ways it can be further improved. We also describe the synthesis of mesoporous TiO2 nanoparticles using titanium alkoxides as precursor and polyethylene glycol (PEG) of different molecular mass as templating agent to induce mesoporosity. The interaction of PEG with titanium alkoxides in polar and nonpolar solvents was studied in detail by macro-Raman spectroscopy, solid-state NMR and MALDI-TOF-MS. The removal of PEG as well as the crystallization process was obtained by hot water treatment at low temperature (90 °C). The mesoporosity was retained after further calcination up to 500 °C. Porosity, morphology, and microstructures of the resultant products were characterized by SEM, nitrogen adsorption–desorption measurements, micro-Raman spectroscopy and XRD. The mesostructure of the TiO2 particles facilitates enhanced transport of electrons, resulting in improved photovoltaic efficiency. Influence of TiO2 nanoparticles on the photovoltaic efficiency of the ITO/PEDOT:PSS/fluorine copolymers/polythiophene:TiO2/Al architecture is analyzed. Influence of TiO2 NP on the principal parameters of different PV architecture is discussed. The analysis of the efficiency is performed using both experimental and theoretical quantum chemical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro, F.A., Faes, A., Geiger, T., Graeff, C.F.O., Nagel, M., Nüesch, F., Hany, R.: Synth. Met. 156, 973–978 (2006)

    Article  CAS  Google Scholar 

  2. Brabec, C., Dyakonov, V., Parisi, J., Sariciftci, N.S.: Organic Photovoltaics Concepts and Realization. Springer Verlag, Berlin (2003)

    Google Scholar 

  3. Ibrahim, M.A., Roth, H.K., Schroedner, M., Konkin, A., Zhokhavets, U., Gobsch, G., Scharff, P., Sensfuss, S.: Org. Electron. 6, 65–77 (2005)

    Article  Google Scholar 

  4. Suresh, P., Balaraju, P., Sharma, S.K., Roy, M.S., Sharma, G.D.: Sol. Energy Mater. Sol. Cells 92, 900–908 (2008)

    Article  CAS  Google Scholar 

  5. Yoo, S., Potscavage Jr., W.J., Domercq, B., Han, S.-H., Li, T.-D., Jones, S.C., Szoszkiewicz, R., Levi, D., Riedo, E., Marder, S.R., Kippelen, B.: Solid-State Electron. 51, 1367–1375 (2007)

    Article  CAS  Google Scholar 

  6. Pokladko, M., Bogdał, D., Matras, K., Gondek, E., Sanetra, J.: Modern Polymeric Materials for Environmental Applications, 2 International Seminar Kraków, 2 (2006) pp. 25–30

    Google Scholar 

  7. Sanetra J.: Fizyczne właściwości układów polimerowych zawierających grupę karbazolową w aspekcie zastosowania ich w diodach elektroluminescencyjnych. Zeszyty Naukowe, Podstawowe Nauki Techniczne nr 23, Kraków (2001)

    Google Scholar 

  8. Barltrop, J.A., Coyle, J.C.: The principles of Photochemistry. Warsaw (1987)

    Google Scholar 

  9. Hoppe, H., Sariciftci, N.S.: J. Mater. Res. 19, 312–367 (2004)

    Article  Google Scholar 

  10. Nelson, J.: Curr. Opin. Solid State Mater. Sci. 6, 87–95 (2002)

    Article  CAS  Google Scholar 

  11. Lochab, B., Burn, P.L., Barkhouse, A., Kirov, K.R., Assender, H.E., Keeble, D.J., Thomsen, E.A., Lewis, A.J., Samuel, I.D.W.: Org. Electron. 8, 801–812 (2007)

    Article  CAS  Google Scholar 

  12. Goris, L., Loi, M.A., Cravino, A., Neugebauer, H., Sariciftci, N.S., Polec, I., Lutsen, L., Andries, E., Manca, J., DeSchepper, L.: D. Vanderzande. Synth. Met. 138, 249–253 (2003)

    Article  CAS  Google Scholar 

  13. Pradhan, B., Pal, A.J.: Synth. Met. 155, 555–559 (2005)

    Article  CAS  Google Scholar 

  14. Luszczynska, B., Dobruchowska, E., Głowacki, I., Ulanski, J., Jaiser, F., Yang, X., Neher, D., Danel, A.: J. Appl. Phys. 99, 024505 (2006)

    Article  Google Scholar 

  15. Kymakis, E., Stratakis, E., Koudoumas, E.: Thin Solid Films 515, 8598–8600 (2007)

    Article  CAS  Google Scholar 

  16. Winder, C., Sariciftci, N.S.: J. Mater. Chem. 14, 1077–1086 (2004)

    Article  CAS  Google Scholar 

  17. Shirakawa, H., MacDiarmid, A.G., Heeger, A.J.: Chem. Commun. 1 (2003)

    Google Scholar 

  18. Goris, L., Loi, M.A., Cravino, A., Neugebauer, H., Sariciftci, N.S., Polec, I., Lutsen, L., Andries, E., Manca, J., De Schepper, L., Vanderzande, D.: Synth. Met. 138, 249–253 (2003)

    Article  CAS  Google Scholar 

  19. Greenham, N.C., Friend, R.H.: Semiconductor devices physics of conjugated polymers. Solid State Phys. 49, 1–148 (1996)

    Article  Google Scholar 

  20. Kao, K.C., Hwang, W.: Electrical Transport in Solids. Pergamon Press, Oxford (1981)

    Google Scholar 

  21. Seanor, D.A. (ed.): Electrical Properties of Polymers. Academic Press, New York (1982)

    Google Scholar 

  22. Hoppe, H., Sariciftci, N.S.: J. Mater. Res. 19(7), 1924 (2004)

    Article  CAS  Google Scholar 

  23. Valaski, R., Muchenski, F., Mello, R.M.Q., Micaroni, L., Roman, L.S., Hümmelgen, I.A.: J. Solid State Electrochem 10, 24–27 (2006)

    Article  CAS  Google Scholar 

  24. Sato, Y., Yamagishi, K., Yamashita, M.: Opt. Rev. 12(4), 324–327 (2005)

    Article  CAS  Google Scholar 

  25. He, Z., Danel, A., Milburn, G.H.W.: J. Lumin. 122–123, 605–609 (2007)

    Article  Google Scholar 

  26. Wolfrum, G., Pütter, R., Menzel, K.: Angew. Chem. 21, 839 (1962)

    Google Scholar 

  27. Gondek, E., Kityk, I.V., Danel, A., Wisła, A., Pokladko, M., Sanetra, J., Sahraoui, B.: Mater. Lett. 60, 3301–3306 (2006)

    Article  CAS  Google Scholar 

  28. Pokladko, M., Gondek, E., Sanetra, J., Danel, A.: Sci. Bull. Phys. Łódź 26, 81–86 (2006)

    CAS  Google Scholar 

  29. Pokladko, M., Sanetra, J., Gondek, E., Nizioł, J., Pokrop, R., Jaglarz J.: e-Polymers (2006) http://www.e-polymers.org. ISSN1618-7229

  30. Całus, S., Gondek, E., Danel, A., Jarosz, B., Pokladko, M., Kityk, A.V.: Mater. Lett. 61, 3292–3295 (2007)

    Article  Google Scholar 

  31. Danel, K., Gondek, E., Pokladko, M., Kityk, I.V.: J. Mater. Sci. Mater. Electron. 20, 171–176 (2009)

    Article  CAS  Google Scholar 

  32. Reyes-Reyes, M., López-Sandoval, R., Liu, J., Carroll, D.L.: Sol. Energy Mater. Sol. Cells 91, 1478–1482 (2007)

    Article  CAS  Google Scholar 

  33. Lee, J.H., Seoul, C., Park, J.K., Youk, J.H.: Synth. Met. 145, 11–14 (2004)

    Article  CAS  Google Scholar 

  34. Cutler, C.A., Burrel, A.K., Collis, G.E., Dastoor, P.C., Officer, D.L., Too, C.O., Wallace, G.G.: Synth. Met. 123, 225–237 (2001)

    Article  CAS  Google Scholar 

  35. De Bettignies, R., Leroy, J., Firon, M., Sentein, C.: Synth. Met. 156, 510–513 (2006)

    Article  Google Scholar 

  36. Tsekouras, G., Too, C.O., Wallace, G.G.: Synth. Met. 157, 441–447 (2007)

    Article  CAS  Google Scholar 

  37. Gondek E.: “Badanie wybranych polimerów jako materiałów elektrolumine-scencyjnych i fotowoltaicznych.” Kraków (2005) – rozprawa doktorska

    Google Scholar 

  38. Jan Pielichowski, Andrzej Puszyński: “Chemia polimerów”, TEZA Wydawnictwo Naukowo – Techniczne, Kraków (2004)

    Google Scholar 

  39. Pearson, J.M., Stolka, M.: Poly(N-vinylcarbazole). Gordon and Breach Science Publishers, New York (1981)

    Google Scholar 

  40. Grazulevicius, J.V., Strohriegl, P., Pielichowski, J., Pielichowski, K.: Prog. Polym. Sci. 28, 1297–1353 (2003)

    Article  CAS  Google Scholar 

  41. Chasteen, S.V.: “Exciton dynamics in conjugated polymer photovoltaics: steady-state and time resolved optical spectroscopy,” University of California, Santa Cruz, Dec. 2005

    Google Scholar 

  42. Gondek, E.: “Studies of some polymers as elecro-luminecent and photovoltaic materials.” PhD Thesis, Krakow (2005)

    Google Scholar 

  43. Pokladko, M., Gondek, E., Sanetra, J., Danel, A.: A comparison between a donor - Acceptor blend layer photovoltaic cell and a double layer photovoltaic cell devices. Sci. Bull. Phys. Politechnika Łódzka, Łódź 26, 81–86 (2006)

    CAS  Google Scholar 

  44. Pokladko, M., Gondek, E., Sanetra, J., Danel, A.: Ogniwa fotowoltaiczne typu “hetetozłącze objętościowe”. XVI Ogólnopolska Konferencja Krtształy Molekularne 2008, 8–12 września 2008. Poznań – Błażejewko P-50-[poster]

    Google Scholar 

  45. Pokladko, M., Gondek, E., Danel, A., izioł, J., Armatys, P., Sanetra, J.: “Zastosowanie materiałów organicznych w fotowoltaice”. XVII Ogólnopolska Konferencja “Kryształy Molekularne” 13–17 września 2010r. Instytut Chemii Fizycznej i Teoretycznej Pol. Wrocławskiej, Polanica Zdrój, P-42-[poster]

    Google Scholar 

  46. Pokladko, M., Gondek, E., Danel A.: “Ogniwa fotowoltaiczne na bazie organicznych materiałów”. Czasopismo Techniczne1-NP/2011 (2011) pp. 77–83. Politechnika Krakowska

    Google Scholar 

  47. Regan, B.O., Gratzel, M.: Nature 153, 737 (1991)

    Article  Google Scholar 

  48. Nazeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopulos, N., Gratzel, M.: J. Am. Chem. Soc. 115, 6382 (1993)

    Article  Google Scholar 

  49. Kalyanasundram, K., Gratzel, M.: Coord. Chem. Rev. 77, 347 (1998)

    Article  Google Scholar 

  50. Mora-Sero, I., Bisquert, J.: Nano Lett. 3, 945–949 (2003)

    Article  CAS  Google Scholar 

  51. Cavigli, L., Bogani, F., Vinattieri, A., Cortese, L., Colocci, M., Faso, V., Baldi, G.: Solid State Sci. 12(11), 1877–1880 (2010)

    Article  CAS  Google Scholar 

  52. Nakade, S., Saito, Y., Kubo, W., Kitamura, T., Wada, Y., Yanagida, S.: J. Phys. Chem. B 107(33), 8607–8611 (2003)

    Article  CAS  Google Scholar 

  53. Cavigli, L., Bogani, F., Vinattieri, A., Faso, V., Baldi, G.: J. Appl. Phys. 106, 053516 (2009)

    Article  Google Scholar 

  54. Kato, S., Masuo, F.: Titanium dioxide-photocatalyzed oxidation I. Kogyo Kagaku Zasshi 67, 42–50 (1964)

    Google Scholar 

  55. McLintock, S., Ritchie, M.: Trans. Faraday Soc. 61, 1007–1016 (1965)

    Article  CAS  Google Scholar 

  56. Fujishima, A., Honda, K.: Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  57. Regan, O., Grätzel, M.: Nature 353, 737–740 (1991)

    Article  Google Scholar 

  58. Kay, A., Grätzel, M.: Sol. Energy Mater. Sol. Cells 44, 99–117 (1996)

    Article  CAS  Google Scholar 

  59. Grätzel, M.: J. Photochem. Photobiol. C: Photochem. Rev. 4, 145–153 (2003)

    Article  Google Scholar 

  60. Balaji, S., Djaoued, Y., Albert, A.-S., Bruning, R., Beaudoin, N., Robichaud, J.: J. Mater. Chem. 21, 3940 (2011)

    Article  CAS  Google Scholar 

  61. Djaoued, Y., Badilescu, S., Ashrit, P.V., Bersani, D., Lottici, P.P., Robichaud, J.: J. Sol-Gel Sci. Technol. 24, 255 (2002)

    Article  CAS  Google Scholar 

  62. Vegard, L.: Results of crystal analysis. Philos. Mag. 32(191), 505–518 (1916)

    CAS  Google Scholar 

  63. Pauling, L., Sturdivant, J.H.: Z. Kristallograph. 68, 239–256 (1916)

    Google Scholar 

  64. Carp, O., Huisman, C.L., Reller, A.: Prog. Solid State Chem. 32, 33–117 (2004)

    Article  CAS  Google Scholar 

  65. Simons, P.Y., Dachille, F.: Acta Crystallogr. 23, 334–336 (1967)

    Article  CAS  Google Scholar 

  66. Latroche, M., Brohan, L., Marchand, R.: K0.06TiO2. J. Solid State Chem. 81, 78–82 (1989)

    Article  CAS  Google Scholar 

  67. Cromer, D.T., Herrington, K.: J. Am. Chem. Soc. 77, 4708–4709 (1955)

    Article  CAS  Google Scholar 

  68. Baur, V.W.H.: Acta Crystallogr. 14, 214–216 (1961)

    Article  CAS  Google Scholar 

  69. Mo, S., Ching, W.: Phys. Rev. B 51, 13023–13032 (1995)

    Article  CAS  Google Scholar 

  70. Thompson, T.L., Yates Jr., J.T.: Chem. Rev. 106, 4428–4453 (2006)

    Article  CAS  Google Scholar 

  71. Linsebigler, A.L., Lu, G., Yates, J.T.: Chem. Rev. 95, 735–758 (1995)

    Article  CAS  Google Scholar 

  72. Muscat, J., Swamy, V., Harrison, N.M.: Phys. Rev. B 65, 1–15 (2002)

    Google Scholar 

  73. Bokhimi, X., Morales, A., Aguilar, M., Toledo-Antonio, J.A., Pedraza, F.: Int. J. Hydrogen Energy 26, 1279–1287 (2001)

    Article  CAS  Google Scholar 

  74. Chen, X., Mao, S.S.: Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  75. Diebold, U.: Surf. Sci. Rep. 48, 53–229 (2003)

    Article  CAS  Google Scholar 

  76. Norotsky, A., Jamieson, J.C., Kleppa, O.J.: Science 158, 338–389 (1967)

    Google Scholar 

  77. Zhang, Q., Gao, L., Guo, J.: Appl. Catal. B Environ. 26, 207–215 (2000)

    Article  CAS  Google Scholar 

  78. Wunderlich, W., Oekermann, T., Miao, L., et al.: J. Ceram. Process. Res. 5, 343–354 (2004)

    Google Scholar 

  79. Paxton, A.T., Thiên-Nga, L.: Phys. Rev. B 57, 1579–1584 (1998)

    Article  CAS  Google Scholar 

  80. Bessekhouad, Y., Robert, D., Weber, J.V.: J. Photochem. Photobiol. A 157, 47 (2003)

    Article  CAS  Google Scholar 

  81. Anderson, M.A., Gieselmann, M.J., Xu, Q.: J. Membr. Sci. 39, 243 (1988)

    Article  CAS  Google Scholar 

  82. Barbe, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Grätzel, M.: J. Am. Ceram. Soc. 80, 3157 (1997)

    Article  CAS  Google Scholar 

  83. Barringer, E.A., Bowen, H.K.: Langmuir 1, 414 (1985)

    Article  CAS  Google Scholar 

  84. Oskam, G., Nellore, A., Penn, R.L., Searson, P.C.: J. Phys. Chem. B 107, 1734 (2003)

    Article  CAS  Google Scholar 

  85. Sugimoto, T.: Adv. Colloid Interface Sci. 28, 65 (1987)

    Article  CAS  Google Scholar 

  86. Djaoued, Y., Badilescu, S., Ashrit, P.V., Bersani, D., Lottici, P.P., Bruning, R.: J. Sol-Gel Sci. Technol. 24, 247 (2002)

    Article  CAS  Google Scholar 

  87. Priya, S., Balaji, S., Djaoued, Y., Robichaud, J.: J. Raman Spectrosc. 40, 1885–1894 (2009)

    Article  CAS  Google Scholar 

  88. Kajihara, K., Yao, T.: J. Sol-Gel Sci. Technol. 16, 257 (1999)

    Article  CAS  Google Scholar 

  89. Kajihara, K., Yao, T.: J. Sol-Gel Sci. Technol. 12, 193 (1998)

    Article  CAS  Google Scholar 

  90. Bu, S., Jin, Z., Liu, X., Du, H., Cheng, Z.: J. Sol-Gel Sci. Technol. 30, 239 (2004)

    Article  CAS  Google Scholar 

  91. Stathatos, E., Lianos, P., Falaras, P.: Prog. Colloid Polym. Sci. 118, 96 (2001)

    Article  CAS  Google Scholar 

  92. Wang, D., Yu, R., Kumada, N., Kinomura, N.: Chem. Mater. 11, 2008 (1999)

    Article  CAS  Google Scholar 

  93. Gröhn, F., Bauer, B.J., Kim, G., Amis, E.: Hydrophobically Macromol. 34, 6701 (2001)

    Article  Google Scholar 

  94. Balaji, S., Djaoued, Y., Robichaud, J.: J. Raman Spectrosc. 37, 1416–1422 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kityk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Djaoued, Y. et al. (2014). Implication of Porous TiO2 Nanoparticles in PEDOT:PSS Photovoltaic Devices. In: Wang, X., Wang, Z. (eds) High-Efficiency Solar Cells. Springer Series in Materials Science, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-01988-8_13

Download citation

Publish with us

Policies and ethics