Skip to main content

Measurement Methods

  • Chapter
  • First Online:
Self-Organized Quantum Dots for Memories

Part of the book series: Springer Theses ((Springer Theses))

  • 723 Accesses

Abstract

The following chapter describes the measurement methods used in this work. In the first part, capacitance-voltage (C-V) spectroscopy and its application to the investigation of the electronic properties of QDs is described. The second part explains a time-resolved measurement method, from which the many-particle hole energy levels in a QD ensemble are derived, and the emission and capture processes between a QD ensemble and a 2DHG are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If an electron (minority carrier) also gets captured into the QD, it instantly recombines with the hole, and hence only holes are stored inside the QDs.

  2. 2.

    It is assumed that the storage time of the holes in the QDs is infinite.

  3. 3.

    It is analogous for electrons.

  4. 4.

    \(C=q \cdot A/l\), with \(A\) the area of the channel cross section, \(l\) the length of the channel, and \(q\) the elementary charge.

  5. 5.

    The exact profile of the density of states is dependent on the lever arm, which itself depends on the charge state of the QDs and is hence not constant (see Sect. 4.1.2).

References

  1. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd edn. ( Wiley, New york, 2006)

    Google Scholar 

  2. P. Blood, J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, London, 1992)

    Google Scholar 

  3. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, Hoboken, 2006)

    Google Scholar 

  4. J. Gelze, Ladungsträgerdynamik in Quantenpunkt-basierten Speicherbausteinen (Diplomarbeit TU, Berlin, 2009)

    Google Scholar 

  5. D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023 (1974)

    Article  ADS  Google Scholar 

  6. G.L. Miller, D.V. Lang, L.C. Kimerling, Capacitance transient spectroscopy. Ann. Rev. Mat. Sci. 7, 377 (1977)

    Article  ADS  Google Scholar 

  7. H.G. Grimmeiss, C. Ovrén, Fundamentals of junction measurements in the study of deep energy levels in semiconductors. J. Phys. E: Sci. Instrum. 14, 1032 (1981)

    Article  ADS  Google Scholar 

  8. J. Bourgoin, M. Lannoo, Point Defects in Semiconductors II - Experimental Aspects, Volume 35 of Springer Series in Solid-State Sciences (Springer, Berlin, 1983)

    Book  Google Scholar 

  9. M. Geller, E. Stock, C. Kapteyn, R.L. Sellin, D. Bimberg, Tunneling emission from self-organized In(Ga)As/GaAs quantum dots observed via time-resolved capacitance measurements. Phys. Rev. B 73(20), 205331 (2006)

    Article  ADS  Google Scholar 

  10. O. Engström, M. Kaniewska, M. Kaczmarczyk, W. Jung, Electron tunneling from quantum dots characterized by deep level transient spectroscopy. Appl. Phys. Lett. 91, 133117 (2007)

    Article  ADS  Google Scholar 

  11. C. Kapteyn, Carrier emission and electronic properties of self-organized semiconductor quantum dots, Mensch & Buch Verlag, (Dissertation, Technische Universität Berlin, Berlin, 2001)

    Google Scholar 

  12. S. Anand, N. Carlsson, M.-E. Pistol, L. Samuelson, W. Seifert, Deep level transient spectroscopy of InP quantum dots. Appl. Phys. Lett. 67(20), 3016 (1995)

    Article  ADS  Google Scholar 

  13. S. Anand, N. Carlsson, M.-E. Pistol, L. Samuelson, W. Seifert, Electrical characterization of InP/GaInP quantum dots by space charge spectroscopy. J. Appl. Phys. 84(7), 3747 (1998)

    Article  ADS  Google Scholar 

  14. C.M.A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N.D. Zakharov, D. Bimberg, P. Werner, Electron escape from InAs quantum dots. Phys. Rev. B 60(20), 14265 (1999)

    Article  ADS  Google Scholar 

  15. C.M.A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P.N. Brunkov, B.V. Volovik, S.G. Konnikov, A.R. Kovsh, V.M. Ustinov, Hole and electron emission from InAs quantum dots. Appl. Phys. Lett. 76(12), 1573 (2000)

    Article  ADS  Google Scholar 

  16. C.M.A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, G. Abstreiter, Many-particle effects in Ge quantum dots investigated by time-resolved capacitance spectroscopy. Appl. Phys. Lett. 77(25), 4169 (2000)

    Article  ADS  Google Scholar 

  17. O. Engström, M. Malmkvist, Y. Fu, H.Ö. Olafsson, E.Ö. Sveinbjörnsson, Thermal emission of electrons from selected s-shell configurations in InAs/GaAs quantum dots. Appl. Phys. Lett. 83(17), 3578–3580 (2003)

    Article  ADS  Google Scholar 

  18. M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, D. Bimberg, 450 meV hole localization energy in GaSb/GaAs quantum dots. Appl. Phys. Lett. 82(16), 2706–2708 (2003)

    Article  ADS  Google Scholar 

  19. S. Schulz, S. Schnüll, C. Heyn, W. Hansen, Charge-state dependence of InAs quantum-dot emission energies. Phys. Rev. B 69(19), 195317 (2004)

    Article  ADS  Google Scholar 

  20. A. Marent, M. Geller, D. Bimberg, A.P. Vasi’ev, E.S. Semenova, A.E. Zhukov, V.M. Ustinov, Carrier storage time of milliseconds at room temperature in self-organized quantum dots. Appl. Phys. Lett. 89(7), 072103 (2006)

    Article  ADS  Google Scholar 

  21. A. Marent, M. Geller, A. Schliwa, D. Feise, K. Pötschke, D. Bimberg, N. Akçay, N. Öncan, 10[sup 6] years extrapolated hole storage time in GaSb/AlAs quantum dots. Appl. Phys. Lett. 91(24), 242109 (2007)

    Article  ADS  Google Scholar 

  22. P. Omling, L. Samuelson, H.G. Grimmeis, Deep level transient spectroscopy evaluation of nonexponential transients in semiconductor alloys. J. Appl. Phys. 54(9), 5117 (1983)

    Article  ADS  Google Scholar 

  23. D.S. Day, M.Y. Tsai, B.G. Streetman, D.V. Lang, Deep-level-transient spectroscopy: system effects and data analysis. J. Appl. Phys. 50(8), 5093 (1979)

    Article  ADS  Google Scholar 

  24. M. Geller, Investigation of carrier dynamics in self-organized quantum dots for memory devices, (Dissertation, Technische Universität, Berlin, 2007)

    Google Scholar 

  25. R.C. Ashoori, H.L. Störmer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, K.W. West, Single-electron capacitance spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68(20), 3088 (1992)

    Article  ADS  Google Scholar 

  26. H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, P.M. Petroff, Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Lett. 73(16), 2252 (1994)

    Article  ADS  Google Scholar 

  27. B.T. Miller, W. Hansen, S. Manus, R.J. Luyken, A. Lorke, J.P. Kotthaus, S. Huant, G. Medeiros-Ribeiro, P.M. Petroff, Few-electron ground states of charge-tunable self-assembled quantum dots. Phys. Rev. B 56(11), 6764 (1997)

    Article  ADS  Google Scholar 

  28. R.J. Warburton, B.T. Miller, C.S. Dürr, C. Bödefeld, K. Karrai, J.P. Kotthaus, G. Medeiros-Ribeiro, P.M. Petroff, S. Huant, Coulomb interactions in small charge-tunable quantum dots: a simple model. Phys. Rev. B 58(24), 16221–16231 (1998)

    Article  ADS  Google Scholar 

  29. R.J. Luyken, A. Lorke, A.O. Govorov, J.P. Kotthaus, G. Medeiros-Ribeiro, P.M. Petroff, The dynamics of tunneling into self-assembled InAs dots. Appl. Phys. Lett. 74(17), 2486 (1999)

    Article  ADS  Google Scholar 

  30. G. Medeiros-Ribeiro, D. Leonard, P.M. Petroff, Electron and hole energy levels in InAs self-assembled quantum dots. Appl. Phys. Lett. 66(14), 1767 (1995)

    Article  ADS  Google Scholar 

  31. C. Bock, K.H. Schmidt, U. Kunze, S. Malzer, G.H. Dohler, Valence-band structure of self-assembled InAs quantum dots studied by capacitance spectroscopy. Appl. Phys. Lett. 82(13), 2071–2073 (2003)

    Article  ADS  Google Scholar 

  32. D. Reuter, P. Schafmeister, P. Kailuweit, A.D. Wieck, Frequency-dependent C(V) spectroscopy of the hole system in InAs quantum dots. Physica E 21, 445–450 (2004)

    Article  ADS  Google Scholar 

  33. D. Reuter, P. Kailuweit, A.D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A. Lorke, J.C. Maan, Coulomb-interaction-induced incomplete shell filling in the hole system of InAs quantum dots. Phys. Rev. Lett. 94, 026808 (2005)

    Article  ADS  Google Scholar 

  34. A. Marent, T. Nowozin, J. Gelze, F. Luckert, D. Bimberg, Hole-based memory operation in an InAs/GaAs quantum dot heterostructure. Appl. Phys. Lett. 95, 242114 (2009)

    Article  ADS  Google Scholar 

  35. M. Geller, B. Marquardt, A. Lorke, D. Reuter, A.D. Wieck, A two-dimensional electron gas as a sensitive detector for time-resolved tunneling measurements on self-assembled quantum dots. Nanoscale Res. Lett. 5, 829–833 (2010)

    Article  ADS  Google Scholar 

  36. B. Marquardt, M. Geller, B. Baxevanis, D. Pfannkuche, A.D. Wieck, D. Reuter, A. Lorke, Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots. Nat. Commun. 2, 209 (2011)

    Article  ADS  Google Scholar 

  37. B. Marquardt, A. Beckel, A. Lorke, A.D. Wieck, D. Reuter, M. Geller, The influence of charged InAs quantum dots on the conductance of a two-dimensional electron gas: mobility vs. carrier concentration. Appl. Phys. Lett. 99(22), 223510 (2011)

    Article  ADS  Google Scholar 

  38. J.M. Elzerman, R. Hanson, L. H. W. v. Beveren, B. Witkamp, L. M. K. Vandersypen, L. P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)

    Google Scholar 

  39. S. Gustavsson, R. Leturcq, B. Simovič, R. Schleser, T. Ihn, P. Studerus, K. Ensslin, Counting statistics of single electron transport in a quantum dot. Phys. Rev. Lett. 96, 076605 (2006)

    Article  ADS  Google Scholar 

  40. S. Gustavsson, R. Leturcq, M. Studer, I. Shorubalko, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Electron counting in quantum dots. Surf. Sci. Rep. 64(6), 191–232 (2009)

    Article  ADS  Google Scholar 

  41. B. Marquardt, M. Geller, A. Lorke, D. Reuter, A.D. Wieck, Using a two-dimensional electron gas to study nonequilibrium tunneling dynamics and charge storage in self-assembled quantum dots. Appl. Phys. Lett. 95, 022113 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nowozin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nowozin, T. (2014). Measurement Methods. In: Self-Organized Quantum Dots for Memories. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01970-3_5

Download citation

Publish with us

Policies and ethics