Skip to main content

Part of the book series: Springer Theses ((Springer Theses,volume 261))

Abstract

Applications that require analysis of high-dimensional data have grown significantly during the past decade. In many of these applications, such as bioinformatics, social networking, and mathematical finance, the dimensionality of the data is usually much larger than the number of samples or observations acquired. Therefore statistical inference or data processing would be ill-posed for these underdetermined problems. Fortunately, in some applications the data is known a priori to have an underlying structure that can be exploited to compensate for the deficit of observations. This structure often characterizes the domain of the data by a low-dimensional manifold, e.g. the set of sparse vectors or the set of low-rank matrices, embedded in the high-dimensional ambient space. One of the main goals of high-dimensional data analysis is to design accurate, robust, and computationally efficient algorithms for estimation of these structured data in underdetermined regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Bahmani and B. Raj. A unifying analysis of projected gradient descent for â„“ p -constrained least squares. Applied and Computational Harmonic Analysis, 34(3): 366–378, May 2013.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Bahmani, P. Boufounos, and B. Raj. Greedy sparsity-constrained optimization. In Conference Record of the 45th Asilomar Conference on Signals, Systems, and Computers, pages 1148–1152, Pacific Grove, CA, Nov. 2011.

    Google Scholar 

  • S. Bahmani, P. T. Boufounos, and B. Raj. Learning model-based sparsity via projected gradient descent. http://arxiv.org/abs/1209.1557 arXiv:1209.1557 [stat.ML], Nov. 2012.

  • S. Bahmani, B. Raj, and P. T. Boufounos. Greedy sparsity-constrained optimization. Journal of Machine Learning Research, 14(3):807–841, Mar. 2013.

    MathSciNet  Google Scholar 

  • D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang. Imaging the body with diffuse optical tomography. IEEE Signal Processing Magazine, 18(6):57–75, Nov. 2001.

    Article  Google Scholar 

  • L. Borcea. Electrical impedance tomography. Inverse Problems, 18(6): R99–R136, Dec. 2002.

    Article  MathSciNet  MATH  Google Scholar 

  • E. J. Candès and T. Tao. Near optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425, Dec. 2006.

    Article  Google Scholar 

  • D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, 2006.

    Article  MathSciNet  Google Scholar 

  • V. Kolehmainen, M. Vauhkonen, J. Kaipio, and S. Arridge. Recovery of piecewise constant coefficients in optical diffusion tomography. Optics Express, 7(13):468–480, Dec. 2000.

    Article  Google Scholar 

  • C. Lazar, J. Taminau, S. Meganck, D. Steenhoff, A. Coletta, C. Molter, V. de Schaetzen, R. Duque, H. Bersini, and A. Nowe. A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics,9(4):1106–1119, Aug. 2012.

    Google Scholar 

  • Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev. Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing. Optics Express, 19(16):14807–14822, July 2011a.

    Article  Google Scholar 

  • Y. Shechtman, A. Szameit, E. Osherovic, E. Bullkich, H. Dana, S. Gazit, S. Shoham, M. Zibulevsky, I. Yavneh, E. B. Kley, Y. C. Eldar, O. Cohen, and M. Segev. Sparsity-based single-shot sub-wavelength coherent diffractive imaging. In Frontiers in Optics, OSA Technical Digest, page PDPA3. Optical Society of America, Oct. 2011b.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bahmani, S. (2014). Introduction. In: Algorithms for Sparsity-Constrained Optimization. Springer Theses, vol 261. Springer, Cham. https://doi.org/10.1007/978-3-319-01881-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01881-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01880-5

  • Online ISBN: 978-3-319-01881-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics