Skip to main content

Does Neuroimaging Provide Evidence of Meditation-Mediated Neuroplasticity?

  • Chapter
  • First Online:
Meditation – Neuroscientific Approaches and Philosophical Implications

Abstract

Results of recent magnetic resonance imaging studies suggest that meditation may be associated with region-specific structural neuroplasticity. To test the hypothesis that meditation-related brain function predicts site-specific structural changes in meditators, we conducted two meta-analyses: one of studies localizing brain activity during meditation, and a second of studies measuring differences in brain structure between meditators and non-meditators. Activation Likelihood Estimation (ALE) meta-analysis of five studies measuring brain activation during meditation revealed the greatest clusters of activity to be in the left frontal cortex and left precuneus. ALE of four studies measuring the differences in brain structure between meditators and controls revealed that meditators tended to have greater brain volume in the left inferior temporal gyrus. Thus, brain activity during meditation did not predict region-specific structural differences between meditators and non-meditators. This finding may reflect recognized limitations in neuroimaging methodology rather than the refutability of the hypothesis itself. Future efforts aimed at understanding the relationship between brain activity and structural changes in the brain should focus on improving neuroimaging experimental design and incorporating evidence from other branches of neurocognitive science. Progress in these areas promises to elucidate the connection between mind-body practices, and brain structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benson, H. 1984. The relaxation response. New York: Avon.

    Google Scholar 

  • Brefczynski-Lewis, J.A., A. Lutz, H.S. Schaefer, D.B. Levinson, and R.J. Davidson. 2007. Neural correlates of attentional expertise in long-term meditation practitioners. PNAS 104(27): 11483–11488.

    Article  PubMed Central  PubMed  Google Scholar 

  • Davidson, R.J., J. Kabat-Zinn, J. Schmacher, M. Rosenkranz, D. Muller, and S.F. Santorelli. 2003. Alterations in brain and immune function produced by mindfulness meditation. Psychosomatic Medicine 65: 564–570.

    Article  PubMed  Google Scholar 

  • Draganski, B., C. Gaser, V. Busch, G. Schuierer, U. Bogdahn, and A. May. 2004. Changes in grey matter induced by training. Nature 427: 311–312.

    Article  PubMed  Google Scholar 

  • Gaser, C., and G. Schlaug. 2003. Brain structures differ between musicians and nonmusicians. Journal of Neuroscience 23(27): 9240–9245.

    PubMed  Google Scholar 

  • Hölzel, B.K., U. Ott, H. Hempel, A. Hackl, K. Wolf, R. Stark, et al. 2007. Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neuroscience Letters 421(1): 16–21. doi:S0304-3940(07)00451-X [pii] 10.1016/j.neulet.2007.04.074 [doi].

    Article  PubMed  Google Scholar 

  • Hölzel, B.K., U. Ott, T. Gard, H. Hempel, M. Weygandt, K. Morgen, et al. 2008. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Social Cognitive and Affective Neuroscience 3(1): 55–61.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jha, A.P., J. Krompinger, and M.J. Baime. 2007. Mindfulness training modifies subsystems of attention. Cognitive, Affective, & Behavioral Neuroscience 7(2): 109–119.

    Article  Google Scholar 

  • Kabat-Zinn, J., A.O. Massion, J. Kristeller, L.G. Peterson, K.E. Fletcher, L. Pbert, et al. 1992. Effectiveness of a meditation-based stress reduction program in the treatment of anxiety disorders. The American Journal of Psychiatry 149(7): 936–943.

    PubMed  Google Scholar 

  • Kabat-Zinn, J., E. Wheeler, T. Light, A. Skillings, M.J. Scharf, T.G. Cropley, et al. 1998. Influence of a mindfulness meditation-based stress reduction intervention on rates of skin clearing in patients with moderate to severe psoriasis undergoing phototherapy (UVB) and photochemotherapy (PUVA). Psychosomatic Medicine 60(5): 625–632.

    Article  PubMed  Google Scholar 

  • Khushu, S., S.S. Kumaran, S. Telles, R.P. Tripathi, K.V. Naveen, and T.L. Matthew. 2005. Functional mapping of human brain during meditation: An fMRI study. Biomedicine Trivandrum Then Taramani 25(2): 40–47.

    Google Scholar 

  • Kochunov, P., J.L. Lancaster, P. Thompson, A.W. Toga, P. Brewer, J. Hardies, et al. 2002. An optimized individual target brain in the Talaraich coordinate system. NeuroImage 17(2): 922–927.

    Article  PubMed  Google Scholar 

  • Laird, A.R., M. Fox, C.J. Price, D.C. Glahn, A.M. Uecker, J.L. Lancaster, et al. 2005. ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping 25: 155–164.

    Article  PubMed  Google Scholar 

  • Lancaster, J.L., and M.J. Martinez. Multi-image analysis GUI. http://ricuthscsaedu/mango/. Accessed 24 May 2009.

    Google Scholar 

  • Lazar, S.W., G. Bush, R.L. Gollub, G.L. Fricchione, G. Khalsa, and H. Benson. 2000. Functional brain mapping of the relaxation response and meditation. NeuroReport 11(7): 1581–1585.

    Article  PubMed  Google Scholar 

  • Lazar, S.W., C.E. Kerr, R.H. Wasserman, J.R. Gray, D.N. Greve, M.T. Treadway, et al. 2005. Meditation experience is associated with increased cortical thickness. NeuroReport 16(17): 1893–1897. doi:00001756-200511280-00005 [pii].

    Article  PubMed Central  PubMed  Google Scholar 

  • Luders, E., A.W. Toga, N. Lepore, and C. Gaser. 2009. The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes. NeuroImage 45(3): 672–678.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lutz, A., J. Brefcyznyski-Lewis, T. Johnstone, and R.J. Davidson. 2008. Regulation of the neural circuitry of emotion by compassion meditation: Effects of meditative expertise. PLoS One 3(3): 1–10.

    Article  Google Scholar 

  • Machelli, A., J.T. Crinion, J.T. Noppeney, J. O'Doherty, J. Ashburner, R.S. Frakowiak, et al. 2004. Neurolinguistics: Structural plasticity in the bilingual brain. Nature 431(7010): 757.

    Article  Google Scholar 

  • Maguire, E.A., D.G. Gadian, I.S. Johnsrude, C.D. Good, J. Ashburner, R.S. Frackowiak, et al. 2000. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences 97(8): 4398–4403.

    Article  Google Scholar 

  • May, A., G. Hajak, S. Gansbauer, T. Steffens, B. Langguth, T. Kleinjung, et al. 2007. Structural brain alterations following 5 days of intervention: Dynamic aspects of neuroplasticity. Cerebral Cortex 17: 205–210.

    Article  PubMed  Google Scholar 

  • Newberg, A.B., and J. Iverson. 2003. The neural basis of the complex task of meditation:neurotransmitter and neurochemical considerations. Medical Hypotheses 61(2): 282–291.

    Article  PubMed  Google Scholar 

  • Ospina, M.B., K. Bond, M. Karkhaneh, L. Tjosvold, B. Vandermeer, Y. Liang, et al. 2007. Meditation practices for health: State of the research. Evidence Report/Technology Assessment 155: 1–263.

    PubMed  Google Scholar 

  • Pagnoni, G., and M. Cekic, 2007. Age effects on gray matter volume and attentional performance in Zen meditation. Neurobiology Aging 28(10): 1623–1627. doi:S0197-4580(07)00243-6 [pii]10.1016/j.neurobiolaging.2007.06.008 [doi].

    Google Scholar 

  • Ritskes, R., M. Ritskes-Hoitinga, H. Stodkilde-Jorgensen, K. Baerentsen, T. Hartman, and S. Denmark. 2003. MRI scanning during Zen meditation: The picture of enlightenment. Constructivism in the Human Sciences 8(1): 85–89.

    Google Scholar 

  • Shimomura, T., M. Fujiki, J. Akiyoshi, T. Yoshida, M. Tabata, H. Kabasawa, et al. 2008. Functional brain mapping during recitation of Buddhist scriptures and repetition of the Namu Amida Butsu: A study in experienced Japanese monks. Turkish neurosurgery 18(2): 134–141.

    PubMed  Google Scholar 

  • Short, E.B., S. Kose, Q. Mu, J. Borckhart, A. Newberg, M.S. George, et al. 2007 Regional activation during meditation shows time and practice effects: An exploratory fMRI study. http://creativecommonsorg:1–7.

    Google Scholar 

  • Turkeltaub, P.E., G.F. Eden, K.M. Jonesm, and T.A. Zeffirom. 2002. Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage 16: 765–780.

    Article  PubMed  Google Scholar 

  • Vestergaard-Poulsen, P., M. van Beek, J. Skewes, C.R. Bjarkam, M. Stubberup, and J. Bertelsen, et al. 2009. Long-term meditation is associated with increased gray matter density in the brain stem. NeuroReport 20(2): 170–174. doi:10.1097/WNR.0b013e328320012a [doi].

    Google Scholar 

Download references

Acknowledgments

Many thanks to Angela Laird, PhD, University of Texas, San Antonio and her staff for support in the use of GingerALE and Mango; Allison Rollins, Librarian, Uniformed Services University of the Health Sciences (USUHS) for assistance in our literature search; and to Wayne Jonas, MD, and Joan Walter of The Samueli Institute, as well as Roger Gibson DVM, Tomoko Hooper, MD, Cara Olsen, PhD, and Daniel Burnett, MD, of USUHS for their support and direction in this project. This work is supported by Uniformed Services University of the Health Sciences under Contract No MDA 905-03-C-0003. The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official USU position, policy or decision unless so designated by other documentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Ives .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Extracted Coordinates: Brain Activation During Meditation

Author

Year

Hemisphere

Anatomic Region

x

y

z

Z max

t

p value

Shimomura et al.

2008

Left

Superior frontal gyrus

0

5

62

4.71

 

<0.05

Left

Superior frontal gyrus

−8

1

63

3.89

 

<0.05

Left

Superior frontal gyrus

−4

−8

67

3.41

 

<0.05

Left

Superior frontal gyrus

−2

6

51

4.14

 

<0.05

Left

Medial frontal gyrus

−2

14

49

4.56

 

<0.05

Left

Medial frontal gyrus

0

27

41

3.82

 

<0.05

Left

Middle frontal gyrus

−44

14

42

5.2

 

<0.05

Left

Middle frontal gyrus

−55

19

29

4.05

 

<0.05

Left

Middle frontal gyrus

−50

6

44

3.49

 

<0.05

Right

Supramarginal gyrus

51

−53

36

4.95

 

<0.05

Right

Supramarginal gyrus

61

−43

33

4.12

 

<0.05

Right

Angular gyrus

44

−61

33

4.14

 

<0.05

Right

Medial frontal gyrus

2

14

47

4.59

 

<0.05

Left

Inferior frontal gyrus

−32

35

7

4.11

 

<0.05

Left

Inferior frontal gyrus

−44

43

−2

3.59

 

<0.05

Left

Inferior frontal gyrus

−35

24

6

3.58

 

<0.05

Left

Middle frontal gyrus

−40

12

51

3.82

 

<0.05

Left

Middle frontal gyrus

−32

12

55

3.72

 

<0.05

Left

Middle frontal gyrus

−28

5

55

3.61

 

<0.05

Brefczynski-Lewis et al.

2007

Left

Middle frontal gyrus/Inferior frontal gyrus

−49

29

19

 

3.2

<0.005

Right

Superior frontal gyrus

31

42

31

 

2.4

<0.05

Left

Middle frontal gyrus/dorsal lateral prefrontal cortex

−21

6

50

 

2.5

<0.05

Left

Rectal gyrus

−0.5

43

−26

 

3.4

<0.005

Left

Precentral, dorsal lateral prefrontal cortex

−34

−2

36

 

3

<0.01

Left

Intraparietal sulcus, superior parietal, supramarginal gyrus

−24

−61

46

 

3.2

<0.005

Right

Superior parietal

14

−62

54

 

3.8

<0.005

Right

Cuneus

22

−85

11

 

4

<0.005

Left

Middle temporal gyrus, inferior frontal gyrus

−38

−7

−26

 

5.1

<0.005

Right

Middle temporal gyrus

54

−12

−8

 

3.2

<0.005

 

Fusiform

−42

−55

−16

 

3.5

<0.005

Left

Putamen

−30

−20

3

 

2.8

<0.01

Right

Lentiform, parahippocampus

29

−42

11

 

2.9

<0.01

 

Cerebellum, declive, culmen

−4

−56

−14

 

3.3

<0.005

Left

Cerebellar tonsil

−22

−39

−40

 

3.3

<0.005

Left

Anterior middle frontal gyrus

−26

43

7

 

−3.17

<0.01

Hölzel et al.

2007

Left

Anterior cingulate cortex

−12

42

12

 

5.11

0.002

Right

Anterior cingulate cortex

9

48

9

 

3.97

0.025

Left

Dorsal medial prefrontal cortex

−12

45

15

 

4.48

0.017

Left

Dorsal medial prefrontal cortex

0

48

39

 

4.2

0.031

Right

Dorsal medial prefrontal cortex

6

51

3

 

4.36

0.017

Right

Dorsal medial prefrontal cortex

3

48

39

 

4.1

0.029

Left

Inferior temporal

−51

−3

−42

 

13.43

0.000

Left

Inferior orbital frontal

−45

36

−21

 

8.26

0.000

Right

Cerebellum

36

−84

−42

 

7.98

0.000

Right

Rectus

15

21

−21

 

7.92

0.000

Left

Cerebellum

−24

−93

−36

 

7.73

0.000

Left

Superior medial frontal

−9

63

6

 

7.45

0.000

Lazar et al.

2000

 

Anterior cingulum

6

33

0

  

<0.001

 

Basal ganglia(putamen)

28

−15

−6

  

<0.001

 

Midbrain

−15

−15

−15

  

<0.001

 

Midbrain

0

−12

−9

  

<0.001

 

Parahippocampal gyrus

−25

−24

−15

  

<0.001

 

Superior frontal gyrus

−6

24

50

  

<0.001

 

Middle frontal gyrus

−40

30

37

  

<0.001

 

Medial frontal gyrus

12

48

9

  

<0.001

 

Parietal lobule

−21

−48

53

  

<0.001

 

Superior parietal lobule

−21

−63

53

  

<0.001

 

Superior parietal lobule

−31

−57

53

  

<0.001

 

Superior parietal lobule

−28

−54

43

  

<0.001

 

Superior/inferior parietal lobule

40

−60

46

  

<0.001

 

Inferior parietal lobule

−34

−36

43

  

<0.001

 

Superior temporal gyrus

59

−60

28

  

<0.001

 

Middle temporal gyrus

59

−57

3

  

<0.001

 

Parahippocampal gyrus

−28

−21

−12

  

<0.001

 

Precentral gyrus

46

−12

53

  

<0.001

 

Postcentral gyrus

−25

−39

62

  

<0.001

 

Paracentral lobule

−6

−33

65

  

<0.001

Lutz et al.

2008

L/R

Precuneus

−5

−55

52

 

5.8

<0.0005

Right

Supramarginal gyrus

52

−43

37

 

6.8

<0.0005

L/R

Inferior parietal lobule

46

−40

47

 

6.1

<0.0005

L/R

Anterior insula

37

15

1

 

4.8

<0.0005

L/R

Superior temporal sulcus

54

−38

14

 

5.7

<0.0005

L/R

Superior temporal gyrus

54

5

−7

 

5.2

<0.0005

Right

Superior parietal lobule

34

−60

46

 

6.1

<0.0005

L/R

Posterior cingulate gyrus

6

−40

40

 

5.5

<0.0005

Right

Middle temporal gyrus

58

−47

−3

 

6.4

<0.0005

L/R

Parahippocampus

12

−39

4

 

5.3

<0.0005

L/R

Fusiform gyrus

48

−38

−17

 

4.93

<0.0005

L/R

Cerebellum

16

−48

−12

 

6.1

<0.0005

Right

Anterior cingulate gyrus

5

24

37

 

4.1

<0.005

Right

Medial frontal gyrus

9

6

42

 

4.1

<0.005

Right

Mid frontal gyrus

22

9

58

 

3.4

<0.005

L/R

Brainstem

3

−22

−6

   

Appendix 2 Extracted Coordinates: Meta-Analysis of Differences in Brain Volume Between Meditators and Controls

Author

Year

Study measure

Hemisphere

Anatomic region

x

y

z

Z max

t

p value

Luders et al.

2009

GM volume

Right

Orbito-frontal cortex

28

41

−3

  

0.0001

Left

Inferior temporal lobe

−45

−8

−28

  

0.0003

Right

Thalamus

21

−22

14

  

0.0003

Left

Paracentral lobe

−12

−9

54

  

0.0004

Right

Paracentral lobe

22

−23

48

  

0.0005

Hölzel et al.

2008

GM concentration

Right

Hippocampus

38

−32

−12

  

0.027

Right

Anterior insula

36

12

6

  

0.022

Left

Inferior temporal gyrus

−49

−9

−28

  

0.058

Medial

Orbitofrontal cortex

1

45

−16

  

0.023

Vestergaard-Poulsen et al.

2009

GM density

Right

Medulla oblongata

3

−37

−58

5.24

 

<0.05

Left

Superior frontal gyrus

−24

50

4

4.29

 

<0.05

Left

Inferior frontal gyrus

−44

28

6

3.96

 

<0.05

Bilateral

Cerebellum

33

−59

−36

4.14

 

<0.05

Right

Medulla Oblongata

5

−45

−51

4.89

 

<0.05

Left

Medulla Oblongata

5

−46

−51

5.49

 

<0.05

Left

Fusiform gyrus

−52

−19

−29

4.75

 

<0.05

 

Cerebellum

−29

−58

−37

4.14

 

<0.05

Pagnoni et al.

2007

GM volume

Left

Putamen

−33

−5

2

 

5.45

0.001

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clausen, S.S., Crawford, C.C., Ives, J.A. (2014). Does Neuroimaging Provide Evidence of Meditation-Mediated Neuroplasticity?. In: Schmidt, S., Walach, H. (eds) Meditation – Neuroscientific Approaches and Philosophical Implications. Studies in Neuroscience, Consciousness and Spirituality, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-01634-4_7

Download citation

Publish with us

Policies and ethics