Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 974 Accesses

Abstract

In this chapter, the modelling results will be summarised and discussed. This includes a comparison of the projected future water resources and predicted consumption in Urumqi Region. Then, strategies for an improved water management are suggested and evaluated within the local context of Urumqi Region. Rather than classifying them according to the part of the water system they belong to (e.g., water supply, water saving usage, water treatment, water quality, and water reuse), the consequences of climate and land use change are discussed for the different uses and the strategies suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizen, V. B., Aizen, E. M., Melack, J. M., & Dozier, J. (1997). Climatic and hydrologic changes in the Tien Shan, Central Asia. Journal of Climate, 10, 1393–1403.

    Article  Google Scholar 

  2. Casassa, G., López, P., Pouyaud, B., & Escobar, F. (2009). Detection of changes in glacial run-off in alpine basins: examples from North America, the Alps, central Asia and the Andes. Hydrological Processes, 23, 31–41.

    Article  Google Scholar 

  3. Kelliher, F. M., Leuning, R., & Schulze, E. D. (1993). Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 95, 153–163.

    Article  Google Scholar 

  4. Fuchs, J. (2011). Multitemporale Detektion der Gletscherveränderung im östlichen Tian Shan (AR Xinjiang, China) im Kontext des Klimawandels: Untersuchungen am Beispiel der Flusseinzugsgebiete von Toutun, Shuixi und Urumqi (69 p). Ruprecht-Karls-Universität Heidelberg.

    Google Scholar 

  5. Fricke, K., Sterr, T., Bubenzer, O., & Eitel, B. (2009). The oasis as a mega city: Urumqi’s fast urbanisation in a semi-arid environment. Die Erde, 140(4), 449–463.

    Google Scholar 

  6. Meßer, J. (1997). Auswirkungen der Urbanisierung auf die Grundwasserneubildung im Ruhrgebiet unter besonderer Berücksichtigung der Castroper Hochfläche und des Stadtgebietes Herne (Vol. 58). Essen: Deutsche Montan Technologie GmbH (DMT-Berichte aus Forschung und Entwicklung).

    Google Scholar 

  7. Deng, W., Bai, J., & Yan, M. (2002). Problems and countermeasures of water resources for sustainable utilisation in China. Chinese Geographical Science, 12(4), 289–293.

    Article  Google Scholar 

  8. Falkenmark, M., Berntell, A., Jägerskog, A., Lundqvits, J., Matz, M., & Tropp, H. (2007). On the verge of a new water scarcity: A call for good governance and human ingenuity (19 p). Stockholm: SIWI.

    Google Scholar 

  9. Water Affairs Bureau Urumqi. (2007). Water Report 2007 (24 p). Urumqi: Water Affairs Bureau Urumqi City.

    Google Scholar 

  10. Zimmerman, R., & Faris, C. (2011). Climate change mitigation and adaptation in North American cities. Current Opinion in Environmental Sustainability, 3(3), 181–187.

    Article  Google Scholar 

  11. Steinberg, C., Weigert, B., Möller, K., & Jekel, M. (Eds.) (2002). Nachhaltige Wasserwirtschaft: Entwicklung eines Bewertungs- und Prüfsystems (311 p). Berlin: Erich Schmidt.

    Google Scholar 

  12. Hardin, G. (1968). The tragedy of the commons: The population problem has no technical solution; it requires a fundamental extension in morality. Science, 162, 1243–1248.

    Article  Google Scholar 

  13. Gao, C. (2009). An analysis of externality economy of Xinjiang water resource development. Journal of Sustainable Development, 2(2), 143–147.

    Google Scholar 

  14. Shiva, V. (2005). Der Kampf um das blaue Gold: Ursachen und Folgen der Wasserverknappung (215 p). Zürich: Rotpunkt-Verlag.

    Google Scholar 

  15. Turner, R. K., Bateman, I. J., & Adger, W. N. (2001). Ecological economics and coastal zone ecosystems’ values: An overview. In R. K. Turner, I. J. Bateman, & W. N. Adger (Eds.), Economics of coastal and water resources. Valuing environmental functions (pp. 1–44). Dordrecht: Kluwer.

    Google Scholar 

  16. Statistics Bureau of Xinjiang Uygur Autonomous Region. (2010). Xinjiang Statistical Yearbook 2010, CD-ROM. Beijing: China Statistics Press.

    Google Scholar 

  17. Guan, D., & Hubacek, K. (2007). Assessment of regional trade and virtual water flows in China. Ecological Economics, 61, 159–170.

    Google Scholar 

  18. Kahlenborn, W., & Kraemer, R. A. (1999). Nachhaltige Wasserwirtschaft in Deutschland (244 p). Berlin: Springer.

    Google Scholar 

  19. Allan, J. A. (1998). Virtual water: A strategic resource: Global solutions to regional deficits. Groundwater, 36(4), 545–546.

    Article  Google Scholar 

  20. Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072.

    Article  Google Scholar 

  21. Stewart, J. B. (1996). Extrapolation of evaporation at time of satellite overpass to daily totals. In J. B. Stewart, E. T. Engman, R. A. Feddes, & Y. Kerr (Eds.), Scaling up in hydrology using remote sensing (pp. 245–255). Chichester, NY: Wiley.

    Google Scholar 

  22. Jakeman, A. J., Giupponi, C., Karssenberg, D., Hare, M. P., Fassio, A., & Letcher, R. A. (2006). Integrated management of water resources: Concepts, approaches and challenges. In C. Giupponi (Ed.), Sustainable management of water resources. An integrated approach (pp. 3–26). Cheltenham: Elgar.

    Google Scholar 

  23. Fricke, K. (2009). Integriertes Wassermanagement—Strategien für das Industriegebiet Midong in Urumqi, NW-China. UmweltWirtschaftsForum, 17(3), 291–298.

    Article  Google Scholar 

  24. Jakobitz, K. (1994). Wassergütewirtschaft und Raumplanung: Probleme der Zusammenarbeit und Lösungsansätze (Vol. 192, 249 p). Hannover: Verlag der ARL (Forschungs- und Sitzungsberichte Akademie für Raumforschung und Landesplanung).

    Google Scholar 

  25. Möller, H.-W. (2002). Trinkwassergefährdung und Trinkwasserpolitik: Eine marktwirtschaftliche Konzeption des Trinkwasserschutzes (Vol. 42, 458 p). Baden–Baden: Nomos-Verl.-Ges (Verwaltungsorganisation, Staatsaufgaben und öffentlicher Dienst).

    Google Scholar 

  26. OECD. (1998). Water consumption and sustainable water resources management (64 p). Paris: OECD (OECD Proceedings).

    Google Scholar 

  27. Abderrahman, W. A. (2000). Urban water management in developing arid countries. Water Resource Development, 16(1), 7–20.

    Article  Google Scholar 

  28. OECD (Ed.). (2006). China in the global economy. Environment, water resources and agricultural policies. Lessons from China and OECD countries (287 p). Paris: OECD.

    Google Scholar 

  29. Statistics Bureau of Xinjiang Uygur Autonomous Region. (2007). Xinjiang Statistical Yearbook 2007, CD-ROM. Beijing: China Statistics Press.

    Google Scholar 

  30. Statistics Bureau of Urumqi. (2010). Urumqi Statistical Yearbook 2010 (456 p). Beijing: China Statistics Press.

    Google Scholar 

  31. Chapagain, A. K., & Hoekstra, A. Y. (2003). Virtual water trade: A quantification of virtual water flows between nations in relation to international trade of livestock and livestock products. In A. Y. Hoekstra (Ed.), Virtual water trade. Proceedings of the international expert meeting on virtual water trade (pp. 49–76). Delft: IHE Delft.

    Google Scholar 

  32. Statistics Bureau of Urumqi. (2009). Urumqi Statistical Yearbook 2009 (506 p). Beijing: China Statistics Press.

    Google Scholar 

  33. Statistics Bureau of Xinjiang Uygur Autonomous Region. (2007). Xinjiang Statistical Yearbook 2007, CD-ROM. Beijing: China Statistics Press.

    Google Scholar 

  34. Statistics Bureau of Urumqi. (2008). Urumqi Statistical Yearbook 2008 (455 p). Beijing: China Statistics Press.

    Google Scholar 

  35. Liu, J., & Savenije, H. H. (2008). Food consumption patterns and their effect on water requirement in China. Hydrology and Earth System Sciences, 12, 887–898.

    Article  Google Scholar 

  36. Hoff, H., Falkenmark, M., Gerten, D., Gordon, L., Karlberg, L., & Rockström, J. (2010). Greening the global water system: Green-blue water initiative (GBI). Journal of Hydrology, 384(3–4), 177–186.

    Article  Google Scholar 

  37. Blanke, A., Rozelle, S., Lohmar, B., Wang, J., & Huang, J. (2007). Water saving technology and saving water in China. Agricultural Water Management, 87(2), 139–150.

    Article  Google Scholar 

  38. Neubert, S. (2005). Abwassernutzung in der Landwirtschaft: ein ‘integriertes’ und ökologisch nachhaltiges Verfahren? In S. Neubert (Ed.), Integriertes Wasserressourcen-Management (IWRM). Ein Konzept in die Praxis überführen (pp. 239–257). Baden–Baden: Nomos Verl.-Ges.

    Google Scholar 

  39. Wolff, H.-P., Doppler, W., & Nabulsi, A. (2005). Potenzial und Folgen der Verwendung von Abwasser in ruralen Räumen: das Beispiel des Wassereinzugsgebietes des Jordan. In S. Neubert (Ed.), Integriertes Wasserressourcen-Management (IWRM). Ein Konzept in die Praxis überführen (pp. 259–270). Baden–Baden: Nomos Verl.-Ges.

    Google Scholar 

  40. Murray, A., & Ray, I. (2010). Wastewater for agriculture: A reuse-oriented planning model and its application in peri-urban China. Water Research, 44(5), 1667–1679.

    Article  Google Scholar 

  41. Yao, Y. (2011). Water reuse: a case study of Urumqi, China. In IWA (Ed.), 1st Central Asian Regional Young and Senior Water Professionals Conference, CD-ROM, Almaty.

    Google Scholar 

  42. Food Agricultural Organisation (FAO). (2003). Unlocking the water potential of agriculture (62 p). Rome: FAO. Retrieved 6 Aug, 2012, from ftp.fao.org/agl/aglw/docs/unlocking_e.pdf.

  43. Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15, 401–415.

    Article  Google Scholar 

  44. Hu, Y., Moiwo, J. P., Yang, Y., Han, S., & Yang, Y. (2010). Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. Journal of Hydrology, 393(3–4), 219–232.

    Article  Google Scholar 

  45. Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., & Gerten, D. (2009). Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resources Research 45 (W00A12).

    Google Scholar 

  46. Zhang, Z. Y., Yang, H., Shi, M. J., Zehnder, A. J., & Abbaspour, K. C. (2011). Analyses of impacts of China’s international trade on its water resources and uses. Hydrology and Earth System Sciences, 15, 2871–2880.

    Google Scholar 

  47. Zhou, Y., Nonner, J. C., Li, W. et al. (2007). Strategies and techniques for groundwater resources development in Northwest China (338 p). Beijing: China Land Press.

    Google Scholar 

  48. Lehn, H., Steiner, M., & Mohr, H. (1996). Wasser—die elementare Ressource: Leitlinien einer nachhaltigen Nutzung (368 p). Berlin: Springer.

    Google Scholar 

  49. Londong, J., Hillenbrand, T., Otterpohl, R., Peters, I., & Tillman, D. (2004). Vom Sinn des Wassersparens. KA—Abwasser, Abfall, 51(12), 1381–1385.

    Google Scholar 

  50. Landu, L., & Brent, A. C. (2006). Environmental life cycle assessment of water supply in South Africa: The Rosslyn industrial area as a case study. Water South Africa, 32(2), 249–256.

    Google Scholar 

  51. Azapagic, A., & Clift, R. (1999). The application of life cycle assessment to process optimisation. Computers & Chemical Engineering, 23, 1509–1526.

    Article  Google Scholar 

  52. Bridle, T., & Skrypski-Mantele, S. (2000). Assessment of sludge reuse options: A life cycle approach. Water Science and Technology, 41(8), 131–135.

    Google Scholar 

  53. Friedrich, E., & Buckley, C. A. (1999). The use of life cycle assessment in the selection of water treatment processes: Final report to the Water Research Commission (63 p). Durban.

    Google Scholar 

  54. Martin, K., & Sauerborn, J. (2006). Agrarökologie (297 p). Stuttgart: UTB.

    Google Scholar 

  55. Chen, X., Zhang, Q., Zhou, K., & Sun, L. (2006). Quantitative assessment and analysis on the dynamic change of ecological capital in arid areas. Chinese Science Bulletin, 51 (Supp. I): 204–212.

    Google Scholar 

  56. Meadows, D., Meadows, D., & Randers, J. (1992). Beyond the limits: Global collapse or a sustainable future (300 p). London: Earthscan Publications.

    Google Scholar 

  57. Feng, Q., & Cheng, G. (1998). Current situation, problems and rational utilisation of water resources in arid Northwest China. Journal of Arid Environments, 40, 373–382.

    Article  Google Scholar 

  58. Food and Agriculture Organization of the United Nations. (2012). Crop Water Productivity. Retrieved 25 Mar, 2012, from http://www.fao.org/landandwater/aglw/cropwater/cwp.stm.

  59. AboutCivil.org. (2012). Water requirements of crops. Retrieved 25 Mar, 2012, from http://www.aboutcivil.org/water-requirements-of-crops.html.

  60. Food and Agriculture Organization of the United Nations. (2012). FAO Food Price Indices. Retrieved 25 Mar, 2012, from http://www.fao.org/worldfoodsituation/wfs-home/foodpricesindex/en/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Fricke .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fricke, K. (2014). Discussion. In: Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01610-8_7

Download citation

Publish with us

Policies and ethics