Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 997 Accesses

Abstract

The research area is the region around Urumqi City (Wūlŭmùqí Shì), located in Northwest China. Urumqi is the provincial capital of Xinjiang Uygur Autonomous Region (Xīnjiāng Wéiwú’ěr Zìzhìqū), the most northwestern province of PR China and close to Central Asia. Xinjiang belongs to the dry temperate zone and is characterised by two large basins, the Tarim and Junggar Basin with the Taklamakan and Gurbantünggüt Desert, respectively, which are separated and surrounded by the Altai, Tianshan and Kunlun Mountains from North to South. The largest area is taken by semi-arid steppe or deserts [1]. Urumqi itself is located at the southern margin of the Junggar Basin and the northern slope of the Tianshan Mountains. The city is a former oasis settlement, which developed between the semi-desert in the North and the mountain ranges in the South.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A linear regression function was fitted into the station data and calculated value for 1975 and 2010. The trend value is the difference between the modelled value at the beginning and at the end of the modelled period.

  2. 2.

    T/s value is the trend value T divided by the standard deviation s and can be used to determine the level of significance.

References

  1. Schultz, J. (2002). Die Ökozonen der Erde: 17 Tabellen, 5 Kästen. Ulmer, Stuttgart (UTB Geowissenschaften, Ökologie, Agrarwissenschaften, 1514), p. 320.

    Google Scholar 

  2. Fricke, K., Sterr, T., Bubenzer, O., & Eitel, B. (2009). The oasis as a mega city: Urumqi’s fast urbanisation in a semi-arid environment. Die Erde, 140(4), 449–463.

    Google Scholar 

  3. Jia, B., Zhang, Z., Ci, L., Ren, Y., Pan, B., & Zhang, Z. (2004). Oasis land-use dynamics and its influence on the oasis environment in Xinjiang China. Journal of Arid Environments, 56(1), 11–26.

    Article  Google Scholar 

  4. Dowamat, T. (1993). Xinjiang—My beloved home (452 p). Urumqi: Xinjiang People’s Publishing House.

    Google Scholar 

  5. Zhou, Y., Nonner, J. C., Li, W., et al. (2007). Strategies and techniques for groundwater resources development in northwest China. Beijing: China Land Press, 338 p.

    Google Scholar 

  6. Autonomous Region Bureau of Surveying and Mapping (2004). Xinjiang-Weiyu’er-Zizhiqu-dituji: Xinjiang Uygur Autonomous Region Atlas (307 p). Beijing: Zhongguo ditu chubanshe.

    Google Scholar 

  7. Aizen, V. B., Aizen, E. M., Melack, J. M., & Dozier, J. (1997). Climatic and Hydrologic Changes in the Tien Shan, Central Asia. Journal of Climate, 10, 1393–1403.

    Article  Google Scholar 

  8. Roberts, B. (1987). Die ökologischen Risiken der Stadtentwicklung und Landnutzung in Urumqi, Xinjiang/China. Univ. Studiengang Geographie Fachber. 8, Bremen (Bremer Beiträge zur Geographie und Raumplanung, 12), 277 p.

    Google Scholar 

  9. Bocco, G., Mendoza, M., & Velázquez, A. (2001). Remote sensing and GIS-based regional geomorphological mapping: A tool for land use planning in developing countries. Geomorphology, 39, 211–219.

    Article  Google Scholar 

  10. Yuan, G., Lichtenfeld, A., & Stahr, K. (1988). Soils of the Manas River Area in Northern Xinjiang, People’s Republic of China. Zeitschrift für Pflanzenernährung und Bodenkunde, 151(3), 152–163.

    Google Scholar 

  11. Uhlenbrook, S. (1999). Untersuchung und Modellierung der Abflussbildung in einem mesoskaligen Einzugsgebiet (201 p). Institut für Hydrologie der Universität Freiburg i. Br., Freiburg (Freiburger Schriften zur Hydrologie, 10).

    Google Scholar 

  12. Plate, E. J., Zehe, E., & Maurer, Th. (2008). Einführung. In E. J. Plate & E. Zehe (Eds.), Hydrologie und Stoffdynamik kleiner Einzugsgebiete (pp. 1–28). Stuttgart: Schweizerbart.

    Google Scholar 

  13. Roberts, B. R. (1993). Water management in desert environments: A comparative analysis (337 p). Berlin: Springer (Lecture notes in earth sciences, 48).

    Google Scholar 

  14. Statistics Bureau of Urumqi (2010). Urumqi Statistical Yearbook 2010 (456 p). Beijing: China Statistics Press.

    Google Scholar 

  15. Gruschke, A. (1991). Neulanderschließung in Trockengebieten der VR China und ihre Bedeutung für die Nahrungsversorgung der chinesischen Bevölkerung (227 p). Hamburg: IfA.

    Google Scholar 

  16. Kolb, A. (1986). Xinjiang als Naturraum und ökologisches Problemgebiet. Geoökodynamik, 7, 29–40.

    Google Scholar 

  17. Becquelin, N. (2000). Xinjiang in the Nineties. The China Journal, 44, 65–90.

    Article  Google Scholar 

  18. Li, R. M. (1989). Migration to China’s Northern Frontier, 1953−1982. Population and Development Review, 15(3), 503–538.

    Article  Google Scholar 

  19. Statistics Bureau of Urumqi (2009). Urumqi Statistical Yearbook 2009 (506 p). Beijing: China Statistics Press.

    Google Scholar 

  20. Brohmeyer, F. (2011). Klassifikation der Landnutzung und ihrer Veränderung von 1975 bis 2007 anhand von Satellitenbildern in der Region Urumqi (Nordwest-China) (53 p). Unpublished bachelor thesis, Ruprecht-Karls-Universität Heidelberg.

    Google Scholar 

  21. Dong, W., Zhang, X., Wang, B., & Duan, Z. (2007). Expansion of Urumqi urban area and its spatial differentiation. Science China Series D: Earth Sciences, 50(Supp. I), 159–168.

    Google Scholar 

  22. Fricke, K. (2008). The development of Midong New District, Urumqi, PR China: Ecological and historical context and environmental consequences (165 p). Heidelberg University: Unpublished diploma thesis.

    Google Scholar 

  23. Chen, M., & Cai, Z. (2000). Groundwater resources and hydro-environmental problems in China. In M. Chen & Z. Cai (Eds.), Groundwater resources and the related environ-hydrogeologic problems in China (pp. 38–44). Beijing: Seismological Press.

    Google Scholar 

  24. Contreras, S., Jobbágy, E. G., Villagra, P. E., Nosetto, M. D., & Puigdefábregas, J. (2011). Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. Journal of Hydrology, 397(1−2), 10–22.

    Article  Google Scholar 

  25. Berkner, A. (1993). Wasserressourcen und ihre Bewirtschaftung in der Volksrepublik China. Petermanns Geographische Mitteilungen, 137(2), 103–126.

    Google Scholar 

  26. Zhu, Y., Wu, Y., & Drake, S. (2004). A survey: obstacles and strategies for the development of ground-water resources in arid inland river basins of Western China. Journal of Arid Environments, 59, 351–367.

    Article  Google Scholar 

  27. Shi, Y., Shen, Y., Kang, E., Li, D., Ding, Y., Zhang, G., et al. (2007). Recent and future climate change in Northwest China. Climatic Change, 80, 379–393.

    Article  Google Scholar 

  28. Barth, N. C. (2011). Auswertung der Temperatur- und Niederschlagsdaten von 15 Klimastationen im Umkreis von Urumqi (AR Xinjiang, China) (65 p). Unpublished bachelor thesis, Ruprecht-Karls-Universität Heidelberg.

    Google Scholar 

  29. Intergovernmental Panel on Climate Change (IPCC) (2007). Climate change 2007: Synthesis report (73 p). Retrieved 11 Nov, 2011, from http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf.

  30. Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., et al. (2007). Historical overview of climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt et al. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 93–127). Cambridge: Cambridge University Press.

    Google Scholar 

  31. Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., et al. (2007). Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt et al. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 235–336). Cambridge: Cambridge University Press.

    Google Scholar 

  32. Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L., et al. (2007). Technical summary. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt et al. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 19–91). Cambridge: Cambridge University Press.

    Google Scholar 

  33. Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J. Z., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43–51.

    Article  Google Scholar 

  34. Halike, Y., Eitel, B., & Küchler, J. (2008). Wasserverknappung und Wasserkonflikte in der zentralasiatischen Wüstenmetropole Urumqi/NW China. TU International, 61, 12–14.

    Google Scholar 

  35. Jiang, F., Zhu, C., Mu, G., & Hu, R. (2005). Magnification of flood disasters and its relation to regional precipitation and local human activities since the 1980s in Xinjiang, Northwestern China. Natural Hazards, 36, 307–330.

    Article  Google Scholar 

  36. Fuchs, J. (2011). Multitemporale Detektion der Gletscherveränderung im östlichen Tian Shan (AR Xinjiang, China) im Kontext des Klimawandels: Untersuchungen am Beispiel der Flusseinzugsgebiete von Toutun, Shuixi und Urumqi (69 p). Heidelberg: Unpublished bachelor thesis, Ruprecht-Karls-Universität Heidelberg.

    Google Scholar 

  37. Bolch, T. (2007). Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data: Climate change impacts on mountain glaciers and permafrost. Global and Planetary Change, 56(1-2), 1–12.

    Article  Google Scholar 

  38. Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., et al. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt et al (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (SM.3-1-SM.3-11). Cambridge: Cambridge University Press.

    Google Scholar 

  39. Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., et al. (2007). Observations: Changes in snow, ice and frozen ground. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt et al. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 337–383). Cambridge: Cambridge University Press.

    Google Scholar 

  40. Stadler, D., Bründl, M., Schneebeli, M., Meyer-Grass, M., & Flühler, H. (1998). Hydrologische Prozesse im subalpinen Wald im Winter (145 p). vdf Hochsch.-Verl. an der ETH, Zürich.

    Google Scholar 

  41. Qin, D., S. Liu, & P. Li (2006). Snow cover distribution, variability, and response to climate change in Western China. Journal of Climate, 19, 1820–1833.

    Google Scholar 

  42. Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P. G., Gregory, J. M., Kitoh, A., et al. (2007). Global climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt et al. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental panel on Climate Change (pp. 747–845). Cambridge: Cambridge University Press.

    Google Scholar 

  43. Niederer, P., Bilenko, V., Ershova, N., Hurni, H., Yerokhin, S., & Maselli, D. (2008). Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years. Climatic Change, 86, 227–234.

    Article  Google Scholar 

  44. Han, T., Ding, Y., Ye, B., Liu, S., & Jiao, K. (2006). Mass-balance characteristics of Urumqi Glacier No. 1, Tien Shan China. Annals of Glaciology, 43, 323–328.

    Article  Google Scholar 

  45. Ye, B., & Chen, K. (1997). A model simulating the processes response of Glacier and runoff to climatic change: A case study of Glacier No 1. In the Urumqi River China. Chinese Geographical Science, 7(3), 243–250.

    Article  Google Scholar 

  46. Zhang, G., Sang, S., & Wang, X. (1990). Simulation of daily runoff in the Urumqi River basin with the improved tank model. In H. Lang & A. Musy (Eds.), Hydrology in mountainous regions (pp. 693–700). IAHS: Wallingford.

    Google Scholar 

  47. Zhou, Y. (1999). River hydrology and water resources in Xinjiang (445 p). Urumqi: Xinjiang Science and Technology Publishing House.

    Google Scholar 

  48. Ye, B., Yang, D, Jiao, K., Han, T., Jin, Z., Yang, H., & Li, Z. (2005). The Urumqi river source Glacier No. 1, Tianshan, China. changes over the past 45 years. Geophysical Research Letters, 32. doi:10.1029/2005GL024178.

  49. Huintjes, E., Li, H., Sauter, T., Li, Z., & Schneider, C. (2010). Degree-day modelling of the surface mass balance of Urumqi Glacier No. 1, Tian Shan, China. The Cryosphere Discussions, 4, 207–232.

    Google Scholar 

  50. Xu, X., Pan, B., Hu, E., Li, Y., & Liang, Y. (2011). Responses of two branches of Glacier No. 1 to climate change from 1993 to 2005, Tianshan, China. Quaternary International, 236(1–2), 143–150.

    Google Scholar 

  51. Tao, S., Fu, C., Zeng, Z., & Zhang, Q. (1997). Two long-term instrumental climatic data bases of the People’s Republic of China: ORNL:CDIAC-47, NDP039. Oak Ridge National Laboratory, TN: Carbon Dioxide Information Analysis Center. Retrieved 25 March, 2009, from http://cdiac.ornl.gov/epubs/ndp/ndp039/ndp039.html.

  52. Dong, W., & Zhang, X. (2011). Urumqi. Cities, 28(1), 115–125.

    Article  Google Scholar 

  53. Du, H., Zhang, X., & Wang, B. (2006). Co-adaptation between modern oasis urbanisation and water resources exploitation: A case of Urumqi. Chinese Science Bulletin, 51 (Supp. I), 189–195.

    Google Scholar 

  54. Water Affairs Bureau Urumqi (2007). Water report 2007 (24 p). Urumqi: Water Affairs Bureau Urumqi City.

    Google Scholar 

  55. Falkenmark, M., Berntell, A., Jägerskog, A., Lundqvits, J., Matz, M., & Tropp, H. (2007). On the verge of a new water scarcity: A call for good governance and human ingenuity (19 p). Stockholm: SIWI.

    Google Scholar 

  56. Hao, Y. (1997). Water environment and sustainable development along the belt of Xinjiang section of the new Eurasian continental bridge. Chinese Geographical Science, 7(3), 251–258.

    Article  Google Scholar 

  57. Babaev, A. G. (1999). Desert problems and desertification in Central Asia: The researches of the desert institute (293 p). Berlin: Springer.

    Book  Google Scholar 

  58. Water Affairs Bureau Urumqi (2004). Water report 2004 (27 p). Urumqi: Water Affairs Bureau Urumqi City.

    Google Scholar 

  59. Water Affairs Bureau Urumqi (2005). Water Report 2005 (27 p). Urumqi: Water Affairs Bureau Urumqi City.

    Google Scholar 

  60. Wang, G., & Cheng, G. (1999). The ecological features and significance of hydrology within arid inland river basins of China. Environmental Geology, 37(3), 218–222.

    Article  Google Scholar 

  61. Hamann, B. (2007). Ökologische und sozioökonomische Entwicklungen am Südrand des Dsungarischen Beckens/AR Xinjiang: vor dem Hintergrund des chinesischen Transformationsprozesses in den 90er Jahren des 20. Jahrhunderts (255 p). Dissertation, Technische Universität Berlin.

    Google Scholar 

  62. Yao, Y. (2011). Water reuse: A case study of Urumqi, China. In IWA (Ed.), 1st Central Asian Regional Young and Senior Water Professionals Conference 2223 Sept, 2011. Almaty: CD-ROM.

    Google Scholar 

  63. Deng, W., Bai, J., & Yan, M. (2002). Problems and countermeasures of water resources for sustainable utilisation in China. Chinese Geographical Science, 12(4), 289–293.

    Article  Google Scholar 

  64. Fricke, K. (2007). Protocol of the excursion to Midong New District October 28th 2007 (4 p), not published.

    Google Scholar 

  65. National Oceanic and Atmospheric Administration of the U.S. Department of Commerce National Climatic Data Centre (NOAA NCDC) (2011). Global summary of the day Wulumuqi station, station number 514630. 22.08.1956–31.12.2010. Retrieved 16 May, 2011, from http://www7.ncdc.noaa.gov/CDO/cdo.

  66. Fricke, K., & Bubenzer, O. (2011). Available water resources and water use efficiency in Urumqi, PR China. In: German Academic Exchange Service (Ed.), Future megacities in balance young researchers’ symposium in Essen 910 Oct, 2010. DAAD Dok and Mat, 66, 134–140.

    Google Scholar 

  67. Bruns, B. R., Ringler, C., & Meinzen-Dick, R. (2005). Water rights reformLessons for institutional design (360 p). Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  68. Brunotte, E., Martin, C., Gebhardt, H., Meurer, M., Meusburger, P., Nipper, J., et al. (Eds.) (2002). Gast bis Ökol (426 p). Heidelberg, Berlin Spektrum Akad. Verl. (Lexikon der Geographie, 2).

    Google Scholar 

  69. Zhang, X., Zhou, K., & Ahati, J. (2011). Natural resources of arid Metropolitan Urumqi (223 p). Urumqi: Xinjiang Art and Photography Publishing House.

    Google Scholar 

  70. WGMS (1991). Glacier mass balance bulletin No. 1 (1988–1989) (70 p). Zürich: IAHS (ICSI)/UNEP/UNESCO, World Glacier Monitoring Service.

    Google Scholar 

  71. WGMS (1993). Glacier mass balance bulletin No. 2 (1990–1991) (74 p). Zürich: IAHS (ICSI) / UNEP / UNESCO, World Glacier Monitoring Service.

    Google Scholar 

  72. WGMS (1994). Glacier mass balance bulletin No. 3 (1992–1993) (80 p). Zürich: IAHS (ICSI) / UNEP / UNESCO, World Glacier Monitoring Service.

    Google Scholar 

  73. WGMS (1996): Glacier mass balance bulletin No. 4 (1994–1995) (90 p). Zürich: IAHS (ICSI) / UNEP / UNESCO, World Glacier Monitoring Service.

    Google Scholar 

  74. WGMS (1999): Glacier mass balance bulletin No. 5 (1996–1997) (96 p). Zürich: IAHS (ICSI) / UNEP / UNESCO. World Glacier Monitoring Service.

    Google Scholar 

  75. WGMS (2001): Glacier mass balance bulletin No. 6 (1998–1999) (93 p). Zürich: IAHS (ICSI) / UNEP / UNESCO / WMO, World Glacier Monitoring Service.

    Google Scholar 

  76. WGMS (2003): Glacier mass balance bulletin No. 7 (2000–2001) (87 p). Zürich: IAHS (ICSI) / UNEP / UNESCO / WMO, World Glacier Monitoring Service.

    Google Scholar 

  77. WGMS (2005): Glacier mass balance bulletin No. 8 (2002–2003) (100 p). Zürich: IUGG (CCS) / UNEP / UNESCO / WMO, World Glacier Monitoring Service.

    Google Scholar 

  78. WGMS (2007): Glacier mass balance bulletin No. 9 (2004–2005) (100 p). Zürich: IUGG (IACS) / UNEP / UNESCO / WMO, World Glacier Monitoring Service.

    Google Scholar 

  79. WGMS (2009): Glacier mass balance bulletin No. 10 (2006–2007) (96 p). Zürich: ICSU (WDS) / IUGG (IACS) / UNEP / UNESCO / WMO, World Glacier Monitoring Service.

    Google Scholar 

  80. U.S. Geological Survey (2005). Shuttle Radar Topography Mission, Version 2, 3-arc second resolution. Global Land Cover Facility, University of Maryland, College Park, Maryland. Retrieved 31 Jan, 2008, from http://glcf.umiacs.umd.edu/data/srtm/index.shtml.

  81. NASA Landsat Program (2010). Landsat ETM+ scenes L1T, USGS, Sioux Falls. Retrieved from http://glovis.usgs.gov/.

  82. U.S. Geological Survey & Japan ASTER Programme (2009). ASTER GDEM Version 1. NASA Land Processes Distributed Active Archive Center, Sioux Falls. Retrieved from 15 Jul, 2009. http://earthexplorer.usgs.gov/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Fricke .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fricke, K. (2014). Research Area. In: Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01610-8_2

Download citation

Publish with us

Policies and ethics