Skip to main content

Fixed Point Theory in Hyperconvex Metric Spaces

  • Chapter
  • First Online:
Topics in Fixed Point Theory

Abstract

In this chapter we propose a review of some of the most fundamental facts and properties on metric hyperconvexity in relation to Metric and Topological Fixed Point Theory. Hyperconvex metric spaces were introduced by Aronszajn and Panitchpakdi in 1956 in relation to the problem of extending uniformly continuous mappings defined between metric spaces. It was obvious from the very beginning that the structure given by the hyperconvexity of the metric to the space was a very rich one. As a consequence of that richness, a very profound and exhaustive Fixed Point Theory has been developed on hyperconvex metric spaces, especially from late eighties of the Twentieth Century by pioneering works due to Baillon, Sine and Soardi. This theory applies for single and multivalued mappings as well as for best-approximation results. Along 9 sections, we expose in a detailed and self-contained way the foundations of this theory. A final additional section, however, has been included to describe some of the newest trends on hyperconvexity and existence of fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As long as the authors know, the word proximinal was proposed by Robert Phelps as a mixture of the words proximinty and minimal to embrace in one word the meaning of both words separately. It is also usual to find the word proximal in the literature meaning the same as proximinal.

References

  1. Aksoy, A.G., Khamsi, M.A.: A selection theorem in metric trees. Proc. Am. Math. Soc. 134, 2957–2966 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, A., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  3. Amini-Harandi, A., Farajzadeh, A.P.: Best approximation, coincidence and fixed point theorems for set-valued maps in \(\mathbb{R}\)-trees. Nonlinear Anal. 71, 1649–1653 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aronszajn, N., Panitchpakdi, P.: Extensions of uniformly continuous transformations and hyperconvex metric spaces. Pac. J. Math. 6, 405–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ayerbe, J.M., Domínguez. T., López, G.: Measures of Noncompactness on Metric Fixed Point Theory. Birkhäuser, Basel (1997)

    Google Scholar 

  6. Baillon, J.B.: Nonexpansive mappings and hyperconvex spaces. Contemp. Math. 72, 11–19 (1988)

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B.: Problem 29, Intersecting Convex Sets: Helly’s Theorem. In: The Art of Mathematics: Coffee Time in Memphis, pp. 91–93. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  8. Borkowski, M., Bugajewski, D., Phulara D.: On some properties of hyperconvex spaces. Fixed Point Theor. Appl. 2010, Article ID 213812, 19 (2010)

    Google Scholar 

  9. Bouamama, S., Misane, D.: Hyperconvex ultrametric spaces and fixed point theory. New Zeal. J. Math. 34, 25–29 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin, Heidelberg (1999)

    Book  MATH  Google Scholar 

  11. Brown, A. L., Deutsch, F., Indumathi, V., Kenderov, P.S.: Lower semicontinuity concepts, continuous selections, and set valued metric projections. J. Approx. Theor. 115, 120–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bryant, D., Tupper, P.F.: Hyperconvexity and tight-span theory for diversities. Adv. Math. 231, 3172–3198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bugajewski, D., Espínola, R.: Remarks on some fixed point theorems for hyperconvex metric spaces and absolute retracts. Lecture Note in Pure and Applied Mathematics, vol. 213, pp. 85–92. Marcel-Dekker, New York (2000)

    Google Scholar 

  14. Bugajewski, D., Grzelaczyk, E.: A fixed point theorem in hyperconvex spaces. Arch. Math. 75, 395–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cerdà, J.: Linear Functional Analysis. Graduate Studies in Mathematics, vol. 116, American Mathematical Society, Providence, Thode Island (2010)

    Google Scholar 

  16. Chang, T.-H., Chen, C.-M., Chen, C.H.: Generalized 2-gKKM property in a hyperconvex metric space and its applications. Nonlinear Anal. 72, 50–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Day, M.M.: Normed Linear Spaces, 3rd edn. Springer, New York (1973)

    Book  MATH  Google Scholar 

  18. Dugundji, J., Granas, A.: Fixed Point Theory. Springer, New York (2003)

    MATH  Google Scholar 

  19. Dhompongsa, S., Kirk, W.A., Panyanak, B.: Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 8, 35–45 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Dress, A.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. Math. 53, 321–402 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dress, A., Scharlau, R.: Gated sets in metric spaces. Aequationes Math. 34, 112–120 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dress, A., Huber, K.T., Moulton V.: Metric Spaces in Pure and Applied Mathematics. (English summary) Proceedings of the Conference on Quadratic Forms and Related Topics (Baton Rouge, LA, 2001). Doc. Math. 2001, Extra Vol., pp. 121–139.

    Google Scholar 

  23. Espínola, R.: Darbo-Sadovski’s theorem in hyperconvex metric spaces. Supplemento Rendiconti Circolo Mat. Palermo, Serie II 40, 129–137 (1996)

    Google Scholar 

  24. Espínola, R.: On selections of the metric projection and best proximity pairs in hyperconvex spaces. Ann. Univ. Mariae Curie-Skłodowska Sect. A 59, 9–17 (2005)

    MATH  Google Scholar 

  25. Espínola, R., Khamsi, M.A.: Introduction to hyperconvex spaces. In: Kirk, W.A., Sims, B. (eds.) Handbook of Metric Fixed Point Theory, pp. 391–435. Kluwer Academic, Dordrecht (2001)

    Chapter  Google Scholar 

  26. Espínola, R., Kirk, W.A.: Fixed point theorems in \(\mathbb{R}\)-trees with applications to graph theory. Topology Appl. 153, 1046–1055 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Espínola, R., López, G.: Ultimately compact operators in hyperconvex metric spaces. In: Takahashi, W., Tamaka, T.T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 142–149. World Scientific Publishing, Singapore (1999)

    Google Scholar 

  28. Espínola, R., Lorenzo, P.: Metric fixed point theory on hyperconvex spaces: Recent progress. Arabian J. Math. 1, 439–463 (2012)

    Article  MATH  Google Scholar 

  29. Espínola, R., Kirk, W.A., López, G.: Nonexpansive retracts in hyperconvex spaces. J. Math. Anal. Appl. 251, 557–570 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Faith, D.: Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992)

    Article  Google Scholar 

  31. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  32. Goodner, D.B.: Projections in normed linear spaces. Trans. Am. Math. Soc. 69, 89–108 (1950)

    MathSciNet  MATH  Google Scholar 

  33. Grothendieck, A.: Une caractérisation vectorielle-métrique des espaces L 1. Canad. J. Math. 7, 552–561 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hasumi, M.: The extension property of complex Banach spaces. Tohoku Math. J. 10, 135–142 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  35. Heinonen, J.: Geometric Embeddings of Metric Spaces. University of Jyvaskyla, Finland (2003)

    MATH  Google Scholar 

  36. Horvath, C.D.: Contractibility and generalized convexity. J. Math. Anal. Appl. 156, 341–357 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Horvath, C.D.: Extension and selection theorems in topological spaces with a generalized convexity structure. Ann. Fac. Sci. Toulouse Math. 2, 253–269 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hughes, B.: Trees and ultrametric spaces: a categorical equivalence. (English summary) Adv. Math. 189, 148–191 (2004)

    Google Scholar 

  39. Hustad, O.: Intersection properties of balls in complex Banach spaces whose duals are L 1-spaces. Acta Math. 132, 283–313 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  40. Justad, O.: A noteo on complex \(\mathcal{P}_{1}\)-spaces. Israel J. Math. 16, 117–119 (1973)

    Article  MathSciNet  Google Scholar 

  41. Isbell, J.R.: Six theorems about injective metric spaces. Comment. Math. Helvetici 39, 439–447 (1964)

    Article  MathSciNet  Google Scholar 

  42. Kemajou, E., Künzi, H.-P. A., Olela Otafudu, O.: The Isbell-hull of a di-space. Topology Appl. 159, 2463–2475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kelley, J.L.: Banach spaces with the extension property. Trans. Am. Math. Soc. 72, 323–326 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  44. Khamsi, M.A.: KKM and Ky Fan Theorems in hyperconvex metric spaces. J. Math. Anal. Appl. 204, 298–306 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Khamsi, M.A.: One-local retract and common fixed point for commuting mappings in metric spaces. Nonlinear Anal. 27, 1307–1313 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Khamsi, M.A.: Sadovskii’s fixed point theorem without convexity. Nonlinear Anal. 53, 829–837 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Khamsi, M. A.: On asymptotically nonexpansive mappings in hyperconvex metric spaces. Proc. Am. Math. Soc. 132, 365–373 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Khamsi, M.A., Kirk, W.A.: An Introduction to Metric Spaces and Fixed Point Theory. Wiley Interscience, New York (2001)

    Book  Google Scholar 

  49. Khamsi, M.A., Kirk, W.A., Martínez-Yáñez, C.: Fixed point and selection theorems in hyperconvex spaces. Proc. Am. Math. Soc. 128, 3275–3283 (2000)

    Article  MATH  Google Scholar 

  50. Khamsi, M.A., Lin, M., Sine, R., On the fixed points of commuting nonexpansive maps in hyperconvex spaces. J. Math. Anal. Appl. 168, 372–380 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004–1006 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kirk, W.A.: Krasnoselskii’s iteration process in hyperbolic space. Numer. Funct. Anal. Optim. 4, 371–381 (1981–1982)

    Google Scholar 

  53. Kirk, W.A.: Hyperconvexity of \(\mathbb{R}\)-trees. Fund. Math. 156, 67–72 (1998)

    MathSciNet  MATH  Google Scholar 

  54. Kirk, W.A.: Fixed point theorems in CAT(0) spaces and \(\mathbb{R}\)-trees. Fixed Point Theor. Appl. 2004, 309–316 (2004)

    MathSciNet  MATH  Google Scholar 

  55. Kirk, W.A.: A note on geodesically bounded \(\mathbb{R}\)-trees. Fixed Point Theor. Appl. 2010, Article ID 393470, 4 (2010)

    Google Scholar 

  56. Kirk, W.A., Panyanak, B.: Best approximation in \(\mathbb{R}\)-trees. Numer. Funct. Anal. Optim. 28, 681–690 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kirk, W.A., Panyanak, B.: Remarks on best approximation in R-trees. Ann. Univ. Mariae Curie-Skłodowska Sect. A 63, 133–138 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Kirk, W.A., Shahzad, N.: Some fixed point results in ultrametric spaces. (English summary) Topology Appl. 159, 3327–3334 (2012)

    Google Scholar 

  59. Kirk, W.A., Shin, S.S.: Fixed point theorems in hyperconvex spaces. Houston J. Math. 23, 175–187 (1997)

    MathSciNet  MATH  Google Scholar 

  60. Kirk, W.A., Sims, B., Xian-Zhi Yuan, G.: The Khaster, Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications. Nonlinear Anal. 39, 611–627 (2000)

    Article  MATH  Google Scholar 

  61. Künzi, H.-P.A., Olela Otafudu, O.: q-hyperconvexity in quasipseudometric spaces and fixed point theorems. J. Funct. Spaces Appl. 2012, Article ID 765903, 18 (2012)

    Google Scholar 

  62. Lemin, A.: On ultrametrization of general metric spaces. Proc. Am. Math. Soc. 131, 979–989 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Markin, J.T.: Fixed points, selections, and best approximation for multivalued mappings in \(\mathbb{R}\)-trees. Nonlinear Anal. 67, 2712–2716 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Minh, B., Klaere, S., von Haeseler, A.: Taxon selection under split diversity. Syst. Biol. 58, 586–594 (2009)

    Article  Google Scholar 

  65. Nachbin, L.: A theorem of the Hahn-Banach type for linear transformations. Trans. Am. Math. Soc. 68, 28–46 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  66. Nowakowski, R., Rival, I.: Fixed-edge theorem for graphs with loops. J. Graph Theor. 3, 339–350 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  67. Pachter, L., Speyer, D.: Reconstructing trees from subtree weights. Appl. Math. Lett. 17, 615–621 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. Park, S.: Evolution of the 1984 KKM theorem of Ky Fan. Fixed Point Theor. Appl. 2012(146), 14 (2012)

    Google Scholar 

  69. Penot, J.P.: Fixed point theorems without convexity. Bull. Soc. Math. France Mem. 60, 129–152 (1979)

    MATH  Google Scholar 

  70. Pia̧tek, B.: Best approximation of coincidence points in metric trees. Ann. Univ. Mariae Curie-Skłodowska Sect. A 62, 113–121 (2008)

    Google Scholar 

  71. Pia̧tek, B., Espínola, R.: Diversities, hyperconvexity and fixed points. arXiv:1303.7146 [math.MG]

    Google Scholar 

  72. Priess-Crampe, S., Ribenboim, P.: The common point theorem for ultrametric spaces. Geometriae Dedicata 71, 105–110 (1998)

    Article  MathSciNet  Google Scholar 

  73. Priess-Crampe, S., Ribenboim, P.: Ultrametric spaces and logic programming. J. Logic Program. 42, 59–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sakai, S.: C -Algebras and W -Algebras. Springer, Berlin, New York (1971)

    Book  Google Scholar 

  75. Salbany, S.: Injective objects and morphisms. In: Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics, pp. 394–409, Prague, 1988. World Scientific Publication, Teaneck, NJ (1989)

    Google Scholar 

  76. Sánchez, M.C., Llinares, J.V., Subiza, B.: A KKM-result and an application for binary and non-binary choice functions. Econom. Theor. 21, 185–193 (2003)

    Article  MATH  Google Scholar 

  77. Schörner, E.: Ultrametric fixed point theorems and applications. Fields Institute Communication, vol. 33. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  78. Sine, R.: On nonlinear contraction semigroups in sup norm spaces. Nonlinear Anal. 3, 885–890 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  79. Sine, R.: Hyperconvexity and approximate fixed points. Nonlinear Anal. 13, 863–869 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  80. Sine, R.: Hyperconvexity and nonexpansive multifunctions. Trans. Am. Math. Soc. 315, 755–767 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  81. Sine, R.: Hyperconvexity and approximate fixed points. Nonlinear Anal. 13, 863–869 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  82. Soardi, P.: Existence of fixed points of nonexpansive mappings in certain Banach lattices. Proc. Am. Math. Soc. 73, 25–29 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  83. Steel, M.A.: Phylogenetic diversity and the Greedy algorithm. Syst. Biol. 54, 527–529 (2005)

    Article  Google Scholar 

  84. Young, G.S., The introduction of local connectivity by change of topology. Am. J. Math. 68, 479–494 (1946)

    Article  MATH  Google Scholar 

  85. Xian-Zhi Yuan, G.: Fixed point and related theorems for set-valued mappings. In: Kirk, W.A., Sims, B. (eds.) Handbook of Metric Fixed Point Theory, pp. 643–690. Kluwer Academic, Dordrecht (2001)

    Chapter  Google Scholar 

Download references

Acknowledgments

The first author wishes to acknowledge The University of Tabuk for its kind invitation to take part in The International Mathematical Workshop (Fixed Point Theory and its Applications) May 26–27, 2012. This work is motivated by that event.

Rafa Espínola and Aurora Fernández León were supported by DGES, MTM2012-34847C02-01 and Junta de Andalucía, Grant FQM-127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Espínola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Espínola, R., Fernández-León, A. (2014). Fixed Point Theory in Hyperconvex Metric Spaces. In: Almezel, S., Ansari, Q., Khamsi, M. (eds) Topics in Fixed Point Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-01586-6_4

Download citation

Publish with us

Policies and ethics