Skip to main content

Abstract

Differences in activity and the structural stability under simulated gastric juice conditions of uninhibited and covalently inhibited cysteine protease, isolated from the fruit, were experimentally observed. We employed molecular dynamics simulations of proteins modeled from the similar ones with known 3D structure to explain experimental findings. Simulations were performed with NAMD, using CHARMM force field in explicit solvent model. Conformational changes observed in MD trajectories offer indication on differences in stability of inhibited vs. uninhibited protein on low pH values. Protonation states of the protein side chains, through the non-bonded interactions that stabilize 3D structures, likely, significantly contribute to difference in stability of uninhibited and covalently inhibited protein on low pH values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman, H.A., Riese, R.J., Shi, G.P.: Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 59, 63–68 (1997)

    Article  Google Scholar 

  2. Sajid, M., McKerrow, J.H.: Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 120, 1–21 (2002)

    Article  Google Scholar 

  3. Santos, M.M.M., Moreira, R.: Michael acceptors as cysteine protease Inhibitors. Mini-Rev. Med. Chem. 7, 1040–1050 (2007)

    Article  Google Scholar 

  4. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucl. Acids Res. 28, 235–242 (2002), http://www.rcsb.org

    Article  Google Scholar 

  5. Bublin, M., Pfister, M., Radauer, C., Oberhuber, C., Bulley, S., Marknell-DeWitt, A., Lid-holm, J., Reese, G., Vieths, S., Breiteneder, H., Hoffmann-Sommergruber, K., Ballmer-Weber, B.K.: Component-resolved diagnosis of kiwifruit allergy with purified natural and recombinant kiwifruit allergens. J. Allergy Clin. Immunol. 125, 687–694 (2010)

    Article  Google Scholar 

  6. Grozdanovic, M.M., Aleksic, I., Burazer, L., Andjelkovic, U., Petersen, A., Gavrovic-Jankulovic, M.: Actinidin, a specific biomarker of kiwifruit allergy, exerts proteolytic activity upon treatment in the simulated gastrointestinal environment (2012) (submitted)

    Google Scholar 

  7. Varughese, K.I., Su, Y., Cromwell, D., Hasnain, S., Xuong, N.H.: Crystal structure of an actinidin-E-64 complex. Biochemistry 31, 5172–5176 (1992)

    Article  Google Scholar 

  8. Baker, E.N., Dodson, E.J.: Crystallographic refinement of the structure of actinidin at 1.7 angstroms resolution by fast Fourier least-squares methods. Acta Crystallogr., Sect. A 36, 559 (1980)

    Article  Google Scholar 

  9. Bas, D.C., Rogers, D.M., Jensen, J.H.: Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73, 765–783 (2008), http://propka.ki.ku.dk/

    Article  Google Scholar 

  10. Eberini, I., Emerson, A., Sensi, C., Ragona, L., Ricchiuto, P., Pedretti, A., Gianazza, E., Tramontano, A.: Simulation of urea-induced protein unfolding: A lesson from bovine β-lactoglobulin. J. Mol. Graph. Mod. 30, 24–30 (2011)

    Article  Google Scholar 

  11. Grozdanović, M., Drakulić, B.J., Gavrović-Jankulović, M.: Conformational mobility of active and E-64-inhibited actinidin (submitted 2013)

    Google Scholar 

  12. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G.: The Clus-talX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25, 4876–4882 (1997)

    Article  Google Scholar 

  13. Pedretti, A., Villa, L., Vistoli, G.: Vega - An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comp. Aided Mol. Des. 18, 167–173 (2004), http://www.ddl.unimi.it

    Article  Google Scholar 

  14. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Compt. Chem. 26, 1781–1802 (2005), http://www.ks.uiuc.edu/Research/namd/

    Article  Google Scholar 

  15. The PyMOL Molecular Graphics System, Version 0.99, Schrödinger, LLC, http://www.pymol.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko J. Drakulić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Drakulić, B.J., Gavrović-Jankulović, M. (2014). Dynamics of Uninhibited and Covalently Inhibited Cysteine Protease on Non-physiological pH. In: Dulea, M., Karaivanova, A., Oulas, A., Liabotis, I., Stojiljkovic, D., Prnjat, O. (eds) High-Performance Computing Infrastructure for South East Europe's Research Communities. Modeling and Optimization in Science and Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-01520-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01520-0_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01519-4

  • Online ISBN: 978-3-319-01520-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics