Skip to main content

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 2))

  • 978 Accesses

Abstract

The influence of the environment on the proton transfer between nucleotide bases has crucial importance for denaturation and mutation processes in DNA. For quantitative description of these processes, activation (ΔE#) and reaction (ΔE) energies of the proton transfer as well as lactam-lactim (KT LL) and amino-imino (KT AI) tautomeric equilibrium constants by the quantum-chemical DFT method are calculated. It is shown that decrease in the environment polarity (Er) due to mixing of ethanol with water (solvatochromic effect) leads to a decrease in the activation energy of the proton transfer and to an increase of the mutation frequency (vm), and at the same time to the tendency of DNA to denaturation. Hence, energy and kinetic characteristics of the proton transfer may be used for quantitative estimation of a solvatochromic effect in DNA. The validity of the solvatochromic effect is confirmed by the bathochromic shift of the DNA absorption band in the UV spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorb, L., Podolyan, Y., Dziekonski, P., Sokolski, W., Leszczynski, J.: Double Proton Transfer in AT and GC Base Pairs. J. Am. Chem. Soc. 126, 10119–10129 (2004), doi:10.1021/ja049155n

    Article  Google Scholar 

  2. Fogarasi, G.: Water-mediated tautomerization of Cytosine to the rare imino form. Chem., Phys. 349, 204–209 (2008), doi:Doi.org/101016/j.chemphys.2008.02.016

    Google Scholar 

  3. Ceron Carrasco, J.P., Requena, A., Michaux, C., Perpete, E.A., Jacquemin, D.: Effects of Hydration of the Proton Transfer Mechanism in the Adenine-Thymine Base Pair. J. Phys. Chem. A 113, 7892–7898 (2009), doi:10.1021/jp900782h)

    Article  Google Scholar 

  4. Ceron Carrasco, J.P., Requena, A.J., Zuniga, J., Michaux, C., Perpete, E.A., Jacquemin, D.: Intermolecular Proton Transfer in Microhydrated GC Base Pairs: A New Mechanism for Spontaneous Mutation in DNA. J. Phys. Chem. A 113, 10549–10556 (2009), doi:10.1021/jp906551f

    Article  Google Scholar 

  5. Cui, S., Yu, J., Kuhner, F., Schulten, K., Gaub, H.F.: Double Stranded DNA Dissociates into Sigle Strands When Dragged into a Poor Solvent. J. Am. Chem. Soc. 129, 14710–14716 (2007), doi:10.1021/ja74776c

    Article  Google Scholar 

  6. Geidushek, E.P., Herskovits, T.: Nonaqueous Solvents of DNA. Reversible and irreversible denaturation in methanol. Arch. Biochem. Biophys. 95, 114–129 (1961), doi:org/10.1016/0003-9861(61) 90116-3

    Google Scholar 

  7. Sinanogly, O., Abdulnur, S.: Hydrophobing stacking of bases and the solvent denaturation of DNA. Photochem. and Photobiol. 3, 333–342 (1964), doi:10.1111/j.1751-1097.1964.tb08156.x)

    Article  Google Scholar 

  8. Bonner, G., Klibanov, A.M.: Structural Stability of DNA in nonaqueous solvents. Biotech. Bioeng. 68, 339–344 (2000), doi:(10.1002/CSICI) 1097-0290(20000505)68

    Google Scholar 

  9. Arscott, P.G., Ma, C., Wennar, G.R., Bloomfield, V.A.: DNA condensation by cobalt hexamine in alcohol-water mixtures: Dielectric constant and other solvent effects. Biopolymers 36, 345–364 (1995), doi:10.1002/bip.360360309

    Article  Google Scholar 

  10. Feig, M., Pettitt, B.M.: A molecular simulation picture of DNA hydration around A-and B- DNA. Biopolymers 48, 199–209 (1998), doi:10.1002/(SICI)1097-0282(1998)48

    Article  Google Scholar 

  11. Chalikyan, T.V., Sarvazyan, A.P., Plum, G.E., Breshauer, K.J.: Influence of Base composition, base sequence. and duplex structure on DNA hydration. Biochemistry 33, 2394–2401 (1994), doi:10.1021/bi00175a007

    Article  Google Scholar 

  12. Kohn, W., Becke, A.D., Parr, R.G.: Density Functional Theory of Electronic Structure. J. Phys. Chem. 100, 12974–12980 (1996), doi:10.1021/jp960669l

    Article  Google Scholar 

  13. Laikov, D.N., Ustynyuk, Y.A.: Priroda_04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallal computing. Russ. Chem. Bull., Int. Edn. 54, 820–826 (2005)

    Article  Google Scholar 

  14. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996), doi:10.1103/PhysRev.lett.77.3865

    Article  Google Scholar 

  15. Adamo, C., Barone, V.J.: Physically motified density functional with improved performances: The modified Perdew-Burke-Ernzerhof model. J. Chem. Phys. 116, 5933–5941 (2002), doi.org./101063/1.1458927

    Google Scholar 

  16. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A38, 3098–3100 (1988), doi:10.1103/PhysRevA38.3098

    Google Scholar 

  17. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994), doi:10.1021/cr00032a006

    Article  Google Scholar 

  18. Lowdin, P.: Some Aspects on the Biological Problems of heredity, Mutations, Agingand Tumors in View of the quantum theory of the DNA molecule. Advances in Quantum Chemistry 2, 213–360 (1966), doi:org/10.1016/S0065-3276(08)60069-6

    Google Scholar 

  19. Kereselidze, J.A., Zarqua, T., S. Kikalishvili, T.J., Churgulia, E.J.M.C., Makaridze, M.C.: Somenew views on the tautomerisation mechanism. Russ. Chem. Rev. 71, 993–1003 (2002)

    Article  Google Scholar 

  20. Rogers, M.T., Burdett, J.T.: Keto-enoltautomerism in β-dicarbonyls studied by nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 86, 2105–2109 (1964), doi:10.1021/ja01065a003

    Article  Google Scholar 

  21. Prezhdo, V.V., Khimenko, N.L., Surov, Y.N.: Influence of the solvent on tautomeric transformation of acetoacetic ester. Ukr. Khim. Zh. 52, 57–63 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jumber Kereselidze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kereselidze, J., Kvaraia, M., Pachulia, Z., Mikuchadze, G. (2014). Solvatochromic Effect for the Denaturation and Mutation Processes in DNA: Computational Study. In: Dulea, M., Karaivanova, A., Oulas, A., Liabotis, I., Stojiljkovic, D., Prnjat, O. (eds) High-Performance Computing Infrastructure for South East Europe's Research Communities. Modeling and Optimization in Science and Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-01520-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01520-0_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01519-4

  • Online ISBN: 978-3-319-01520-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics