Skip to main content

Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations

  • Chapter
  • First Online:
Multi-Band Effective Mass Approximations

Abstract

This chapter is concerned with the derivation and numerical testing of discrete transparent boundary conditions (DTBCs) for stationary multi-band effective mass approximations (MEMAs). We analyze the continuous problem and introduce transparent boundary conditions (TBCs). The discretization of the differential equations is done with the help of finite difference schemes.A fully discrete approach is used in order to develop DTBCs that are completely reflection-free. The analytical and discrete dispersion relations are analyzed in depth and the limitations of the numerical computations are shown. We extend the results of earlier works on DTBCs for the scalar Schrödinger equation by considering alternative finite difference schemes.The introduced schemes and their corresponding DTBCs are tested numerically on an example with a single barrier potential. The d-band kp-model is introduced as most general MEMA. We derive DTBCs for the d-band kp-model and test our results on a quantum well nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)

    MathSciNet  Google Scholar 

  2. X. Antoine, C. Besse, M. Ehrhardt, P. Klein, Modeling boundary conditions for solving stationary Schrödinger equations. Preprint 10/04, University of Wuppertal, February 2010.

    Google Scholar 

  3. A. Arnold, M. Ehrhardt, I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1, 501–556 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design 6, 313–319 (1998)

    Article  Google Scholar 

  5. A. Arnold, Mathematical concepts of open quantum boundary conditions. Trans. Theory Stat. Phys. 30, 561–584 (2001)

    Article  MATH  Google Scholar 

  6. U. Bandelow, H.-Chr. Kaiser, Th. Koprucki, J. Rehberg, Spectral properties of kp Schrödinger operators in one space dimension Numer. Funct. Anal. Optimization 21, 379–409 (2000)

    Google Scholar 

  7. N. Ben Abdallah, P. Degond, P.A. Markowich, On a one-dimensional Schrödinger-Poisson scattering model. ZAMP 48, 135–155 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Ben Abdallah, J. Kefi-Ferhane, Mathematical analysis of the two-band Schrödinger model. Math. Meth. Appl. Sci. 31, 1131–1151 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Birner, T. Kubis, P. Vogl, Simulation of quantum cascade lasers – optimizing laser performance. Photonik International 2, 60–63 (2008)

    Google Scholar 

  10. R. Chen, Z. Xu, L. Sun, Finite-difference scheme to solve Schrödinger equations. Phys. Review E 47, 3799–3802 (1993)

    Article  Google Scholar 

  11. M. Ehrhardt, Discrete artificial boundary conditions, Ph.D. dissertation, Technische Universität Berlin (2001)

    Google Scholar 

  12. M. Ehrhardt, A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation. Riv. Matem. Univ. di Parma 6, 57–108 (2001)

    MathSciNet  Google Scholar 

  13. P. Enders, M. Woerner, Exact 4 × 4 block diagonalization of the eight-band kp Hamiltonian matrix for the tetrahedral semiconductors and its application to strained quantum wells. Semicond. Sci. Technol. 11, 983–988 (1996)

    Article  Google Scholar 

  14. P. Klein, X. Antoine, C. Besse, M. Ehrhardt, Absorbing boundary conditions for solving N-dimensional stationary Schrödinger equations with unbounded potentials and nonlinearities. Commun. Comput. Phys. 10, 1280–1304 (2011)

    MathSciNet  Google Scholar 

  15. D. Klindworth, Discrete transparent boundary conditions for multiband effective mass approximations, Diploma Thesis, Technische Universität Berlin (2009)

    Google Scholar 

  16. Th. Koprucki, Zu kp-Schrödingeroperatoren, Ph.D. dissertation, Freie Universität Berlin (2008)

    Google Scholar 

  17. C. Lent, D. Kirkner, The quantum transmitting boundary method. J. Appl. Phys. 67, 6353–6359 (1990)

    Article  Google Scholar 

  18. P. Matus, Exact difference schemes for time-dependent problems. Comput. Meth. Appl. Math. 5, 422–448 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. R.E. Mickens, Difference Equations: Theory and Applications (Van Nostrand Reinhold, New York, 1990, 2nd ed.)

    Google Scholar 

  20. R.E. Mickens, Novel explicit finite-difference schemes for time-dependent Schrödinger equations. Comput. Phys. Commun. 63, 203–208 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Milovanovic, O. Baumgartner, H. Kosina, Simulation of quantum cascade lasers using Robin boundary conditions. in: 9th International Conference on Numerical Simulation of Optoelectronic Devices, Gwangju Institute of Science and Technology, 2009.

    Google Scholar 

  22. C.A. Moyer, Numerical solution of the stationary state Schrödinger equation using discrete transparent boundary conditions. Comput. Sci. Engin. 8, 32–40 (2006)

    Article  Google Scholar 

  23. C. Negulescu, Numerical analysis of a multiscale finite element scheme for the resolution of the stationary Schrödinger equation. Numerische Mathematik 108, 625–652 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Pérez-Alvarez, H. Rodriguez-Coppola, Transfer matrix in 1D Schrödinger problems with constant and position-dependent mass. Phys. Stat. Sol. (b) 145, 493–500 (1988)

    Article  Google Scholar 

  25. R. Pérez-Alvarez, H. Rodriguez-Coppola, V.R. Velasco, F. Garcia-Moliner, A study of the matching problem using transfer matrices. J. Phys. C: Solid State Phys. 21, 2197–2206 (1988)

    Article  Google Scholar 

  26. T.E. Simos, P.S. Williams, On finite difference methods for the solution of the Schrödinger equation. Computers & Chemistry 23, 513–554 (1999)

    Article  MATH  Google Scholar 

  27. U. Wulf, J. Kucera, P.N. Racec, E. Sigmund, Transport through quantum systems in the R-matrix formalism. Phys. Rev. 58, 16209–16220 (1998)

    Article  Google Scholar 

  28. A. Zisowsky, Discrete transparent boundary conditions for systems of evolution equations, Ph.D. dissertation, Technische Universität Berlin (2003)

    MATH  Google Scholar 

  29. A. Zisowsky, A. Arnold, M. Ehrhardt, Th. Koprucki, Discrete transparent boundary conditions for transient kp-Schrödinger equations with application to quantum-heterostructures. J. Appl. Math. Mech. (ZAMM) 85, 793–805 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Zlotnik, I. Zlotnik, Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. to appear in: Kinetic and Related Models (2013)

    Google Scholar 

  31. A. Zlotnik, I. Zlotnik, Finite element method with discrete transparent boundary conditions for the one-dimensional non-stationary Schrödinger equation. Doklady Mathematics 86, 750–755 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Klindworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klindworth, D., Ehrhardt, M., Koprucki, T. (2014). Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations. In: Ehrhardt, M., Koprucki, T. (eds) Multi-Band Effective Mass Approximations. Lecture Notes in Computational Science and Engineering, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-01427-2_8

Download citation

Publish with us

Policies and ethics