Skip to main content

Sum Frequency Generation Vibrational Spectroscopy: A Sensitive Technique for the Study of Biological Molecules at Interfaces

  • Chapter
  • First Online:
Surface Analysis and Techniques in Biology

Abstract

The behavior of biological molecules in interfacial environments is critical to understanding a broad range of phenomena, from biocompatibility to the functions of membrane-associated peptides and proteins. Sum frequency generation (SFG) vibrational spectroscopy is a nonlinear optical vibrational spectroscopic technique with an excellent sensitivity to interfacial molecules and molecular ordering and is well suited to probing biomolecules in a native interfacial environment. Using this technique, one can obtain unique information on the biomolecular orientation and conformation at interfaces. SFG also provides additional measurements that are complementary to other vibrational studies; more complicated protein structures and orientation distributions may be studied in greater detail when SFG is combined with other vibrational techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.

    CAS  PubMed  Google Scholar 

  2. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, et al. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423:33–41.

    CAS  PubMed  Google Scholar 

  3. Horbett TA, Brash JL, editors. Proteins at interfaces II: fundamentals and applications, ACS symposium series. Washington, DC: American Chemical Society; 1995. p. 561.

    Google Scholar 

  4. Yebra DM, Kiil S, Dam-Johansen K. Antifouling technology–past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 2004;50:75–104.

    CAS  Google Scholar 

  5. Gray JJ. The interaction of proteins with solid surfaces. Curr Opin Struct Biol. 2004; 14:110–5.

    CAS  PubMed  Google Scholar 

  6. Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. Biosci Bioeng. 2001;91:233–44.

    CAS  Google Scholar 

  7. Chen X, Chen Z. SFG studies on interactions between antimicrobial peptides and supported lipid bilayers. Biochim Biophys Acta. 2006;1758:1257–73.

    CAS  PubMed  Google Scholar 

  8. Wang J, Clarke ML, Chen X, Even MA, Johnson WC, Chen Z. Surf Sci. 2005;587:1–11.

    CAS  Google Scholar 

  9. Chen Z, Shen Y, Somorjai GA. Molecular studies on protein conformations at polymer/liquid interfaces using sum frequency generation vibrational spectroscopy. Annu Rev Phys Chem. 2002;53:437–65.

    CAS  PubMed  Google Scholar 

  10. Bain CD. Sum-frequency vibrational spectroscopy of the solid/liquid interface. J Chem Soc Faraday Trans. 1995;91:1281–96.

    CAS  Google Scholar 

  11. Eisenthal KB. Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chem Rev. 1996;96:1343–60.

    CAS  PubMed  Google Scholar 

  12. Richmond GL. Structure and bonding of molecules at aqueous surfaces. Annu Rev Phys Chem. 2001;52:357–89.

    CAS  PubMed  Google Scholar 

  13. Shen YR, Ostroverkhov V. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem Rev. 2006;106:1140–54.

    CAS  PubMed  Google Scholar 

  14. Gopalakrishnan S, Liu D, Allen HC, Kuo M, Shultz MJ. Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem Rev. 2006;106:1155–75.

    CAS  PubMed  Google Scholar 

  15. Zhang D, Gutow JH, Eisenthal KB. Structural phase transitions of small molecules at air/water interfaces. J Chem Soc Faraday Trans. 1996;92:539–43.

    CAS  Google Scholar 

  16. Superfine R, Huang JY, Shen YR. Nonlinear optical studies of the pure liquid/vapor interface: vibrational spectra and polar ordering. Phys Rev Lett. 1991;66:1066–9.

    CAS  PubMed  Google Scholar 

  17. Du Q, Superfine R, Freysz E, Shen YR. Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett. 1993;15:2313–6.

    Google Scholar 

  18. Brown MG, Walker DS, Raymond EA, Richmond GL. Vibrational sum-frequency spectroscopy of alkane/water interfaces: experiment and theoretical simulation. J Phys Chem B. 2003;107:237–44.

    CAS  Google Scholar 

  19. Harper KL, Allen HC. Competition between DPPC and SDS at the air-aqueous interface. Langmuir. 2007;23:8925–31.

    CAS  PubMed  Google Scholar 

  20. Conboy JC, Messmer MC, Richmond GL. Investigation of surfactant conformation and order at the liquid− liquid interface by total internal reflection sum-frequency vibrational spectroscopy. J Phys Chem. 1996;100:7617–22.

    CAS  Google Scholar 

  21. Baldelli S, Mailhot G, Ross P, Shen YR, Somorjai GA. Potential dependent orientation of acetonitrile on platinum (111) electrode surface studied by sum frequency generation. J Phys Chem B. 2001;105:654–62.

    CAS  Google Scholar 

  22. Lahann J, Mitragotri S, Tran T, Kaido H, Sundaram J, Choi IS, et al. A reversibly switching surface. Science. 2003;299:371–4.

    CAS  PubMed  Google Scholar 

  23. Chou KC, Kim J, Baldelli S, Somorjai GA. Vibrational spectroscopy of carbon monoxide, acetonitrile, and phenylalanine adsorbed on liquid electrode interfaces by sum frequency generation. J Electroanal Chem. 2003;554–555:253–63.

    Google Scholar 

  24. Chen Z, Gracias DH, Somorjai GA. Sum frequency generation (SFG)–surface vibrational spectroscopy studies of buried interfaces: catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; polymer surface structures at the solid–gas and solid–liquid interfaces. Appl Phys B. 1999;68:549–57.

    CAS  Google Scholar 

  25. Rupprechter G. A surface science approach to ambient pressure catalytic reactions. Catal Today. 2007;126:3–17.

    CAS  Google Scholar 

  26. Somorjai GA. New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions. Appl Surf Sci. 1997;121–122:1–19.

    Google Scholar 

  27. Belkin MA, Shen YR. Doubly resonant IR-UV sum-frequency vibrational spectroscopy on molecular chirality. Phys Rev Lett. 2003;91:213907.

    CAS  PubMed  Google Scholar 

  28. Belkin MA, Kulakov TA, Ernst KH, Han SH, Shen YR. Resonant sum-frequency generation in chiral liquids. Opt Mater. 2003;21:1–5.

    CAS  Google Scholar 

  29. Ji N, Shen YR. A dynamic coupling model for sum frequency chiral response from liquids composed of molecules with a chiral side chain and an achiral chromophore. J Am Chem Soc. 2005;127:12933–42.

    CAS  PubMed  Google Scholar 

  30. Briggman KA, Stephenson JC, Wallace WE, Richter LJ. Absolute molecular orientational distribution of the polystyrene surface. J Phys Chem B. 2001;105:2785–91.

    CAS  Google Scholar 

  31. Gautam KS, Schwab AD, Dhinojwala A, Zhang D, Dougal SM, Yeganeh MS. Molecular structure of polystyrene at air/polymer and solid/polymer interfaces. Phys Rev Lett. 2000;85:3854–7.

    CAS  PubMed  Google Scholar 

  32. Shen YR. Principles of nonlinear optics (Wiley series in pure and applied optics). New York: Wiley; 1984. p. 563.

    Google Scholar 

  33. Wang J, Even MA, Chen X, Schmaier AH, Waite JH, Chen Z. Detection of amide I signals of interfacial proteins in situ using SFG. J Am Chem Soc. 2003;125:9914–5.

    CAS  PubMed  Google Scholar 

  34. Zhuang X, Miranda PB, Kim D, Shen YR. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B. 1999;59:12632–40.

    CAS  Google Scholar 

  35. Wang J, Paszti Z, Even MA, Chen Z. Measuring polymer surface ordering differences in air and water by sum frequency generation vibrational spectroscopy. J Am Chem Soc. 2002;124:7016–23.

    CAS  PubMed  Google Scholar 

  36. Lambert AG, Davies PB, Neivandt D. Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. J Appl Spectrosc Rev. 2005;40:103.

    CAS  Google Scholar 

  37. Hirose C, Akamatsu N, Domen K. Formulas for the analysis of the surface SFG spectrum and transformation coefficients of cartesian SFG tensor components. Appl Spectrosc. 1992;46:1051–72.

    Google Scholar 

  38. Moad AJ, Simpson GJ. A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies. J Phys Chem B. 2004;108:3548–62.

    CAS  Google Scholar 

  39. Lee S, Wang J, Krimm S, Chen Z. Irreducible representation and projection operator application to understanding nonlinear optical phenomena: hyper-Raman, sum frequency generation, and four-wave mixing spectroscopy. J Phys Chem A. 2006;110:7035–44.

    CAS  PubMed  Google Scholar 

  40. Pauling L, Corey RB. Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc Natl Acad Sci U S A. 1951;37:235–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Pauling L, Corey RB. Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc Natl Acad Sci U S A. 1951;37:729–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Chen X, Wang J, Boughton AP, Kristalyn CB, Chen Z. Multiple orientation of melittin inside a single lipid bilayer determined by combined vibrational spectroscopic studies. J Am Chem Soc. 2007;129:1420–7.

    CAS  PubMed  Google Scholar 

  43. Marsh D, Muller M, Schmitt F. Orientation of the infrared transition moments for an alpha-helix. Biophys J. 2000;78:2499–510.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Rintoul L, Carter EA, Stewart SD, Fredericks PM. Keratin orientation in wool and feathers by polarized Raman spectroscopy. Biopolymers. 2000;57:19–28.

    CAS  PubMed  Google Scholar 

  45. Lee S, Krimm S. Ab initio-based vibrational analysis of alpha-poly(L-alanine). Biopolymers. 1998;46:283–317.

    CAS  Google Scholar 

  46. Lee S, Krimm S. Polarized Raman spectra of oriented films of alpha-helical poly(L-alanine) and its N-deuterated analogue. J Raman Spectrosc. 1998;29:73–80.

    Google Scholar 

  47. Wang J, Lee S, Chen Z. Quantifying the ordering of adsorbed proteins in situ. J Phys Chem B. 2008;112:2281–90.

    CAS  PubMed  Google Scholar 

  48. Chen X, Boughton AP, Tesmer JJG, Chen Z. In situ investigation of heterotrimeric G protein βγ subunit binding and orientation on membrane bilayers. detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. J Am Chem Soc. 2007;129:12658–9.

    CAS  PubMed  Google Scholar 

  49. Wang J, Chen X, Clarke ML, Chen Z. Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. Proc Natl Acad Sci U S A. 2005;102:4978–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Chen X, Wang J, Sniadecki JJ, Even MA, Chen Z. Probing α-helical and β-sheet structures of peptides at solid/liquid interfaces with SFG. Langmuir. 2005;21:2662–4.

    CAS  PubMed  Google Scholar 

  51. Ong TH, Davies PB, Bain CD. Sum-frequency spectroscopy of monolayers of alkoxy-terminated alkanethiols in contact with liquids. Langmuir. 1993;9:1836–45.

    CAS  Google Scholar 

  52. Wang J, Chen C, Buck SM, Chen Z. Molecular chemical structure on poly(methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. J Phys Chem B. 2001;105:12118–25.

    CAS  Google Scholar 

  53. Esenturk O, Walker RA. Surface vibrational structure at alkane liquid/vapor interfaces. J Chem Phys. 2006;125:174701.

    PubMed  Google Scholar 

  54. Holman J, Davies PB, Nishida T, Ye S, Neivandt DJ. Sum frequency generation from Langmuir-Blodgett multilayer films on metal and dielectric substrates. J Phys Chem B. 2005;109:18723–32.

    CAS  PubMed  Google Scholar 

  55. Beattie DA, Haydock S, Bain CD. A comparative study of confined organic monolayers by Raman scattering and sum-frequency spectroscopy. Vib Spectrosc. 2000;24:109–23.

    CAS  Google Scholar 

  56. Huang JY, Shen YR. Theory of doubly resonant infrared-visible sum-frequency and difference-frequency generation from adsorbed molecules. Phys Rev A. 1994;49:3973–81.

    CAS  PubMed  Google Scholar 

  57. Raschke MB, Hayashi M, Lin SH, Shen YR. Doubly-resonant sum-frequency generation spectroscopy for surface studies. Chem Phys Lett. 2002;359:367–72.

    CAS  Google Scholar 

  58. Hayashi M, Lin SH, Raschke MB, Shen YR. A molecular theory for doubly resonant IR− UV–vis sum-frequency generation. J Phys Chem A. 2002;106:2271–82.

    CAS  Google Scholar 

  59. Dreesen L, Humbert C, Sartenaer Y, Caudano Y, Volcke C, Mani AA, et al. Electronic and molecular properties of an adsorbed protein monolayer probed by two-color sum-frequency generation spectroscopy. Langmuir. 2004;20:7201–7.

    CAS  PubMed  Google Scholar 

  60. Chen Z, Ward R, Tian Y, Malizia F, Gracias DH, Shen YR, et al. Interaction of fibrinogen with surfaces of end-group-modified polyurethanes: a surface-specific sum-frequency-generation vibrational spectroscopy study. J Biomed Mater Res. 2002;62:254–64.

    CAS  PubMed  Google Scholar 

  61. Mermut O, Phillips DC, York RL, McCrea KR, Ward RS, Somorjai GA. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. J Am Chem Soc. 2006;128:3598–607.

    CAS  PubMed  Google Scholar 

  62. Phillips DC, York RL, Mermut O, McCrea KR, Ward RS, Somorjai GA. Side chain, chain length, and sequence effects on amphiphilic peptide adsorption at hydrophobic and hydrophilic surfaces studied by sum-frequency generation vibrational spectroscopy and quartz crystal microbalance. J Phys Chem C. 2007;111:255–61.

    CAS  Google Scholar 

  63. Watry MR, Richmond GL. Orientation and conformation of amino acids in monolayers adsorbed at an oil/water interface as determined by vibrational sum-frequency spectroscopy. J Phys Chem B. 2002;106:12517–23.

    CAS  Google Scholar 

  64. Evans-Nguyen KM, Fuierer RR, Fitchett BD, Tolles LR, Conboy JC, Schoenfisch MH. Changes in adsorbed fibrinogen upon conversion to fibrin. Langmuir. 2006;22:5115–21.

    CAS  PubMed  Google Scholar 

  65. Kim J, Cremer PS. Elucidating changes in interfacial water structure upon protein adsorption. Chemphyschem. 2001;2:543–6.

    CAS  PubMed  Google Scholar 

  66. Kim J, Kim G, Cremer PS. Investigations of water structure at the solid/liquid interface in the presence of supported lipid bilayers by vibrational sum frequency spectroscopy. Langmuir. 2001;17:7255–60.

    CAS  Google Scholar 

  67. Wang J, Buck SM, Even MA, Chen Z. Molecular responses of proteins at different interfacial environments detected by sum frequency generation vibrational spectroscopy. J Am Chem Soc. 2002;124:13302–5.

    CAS  PubMed  Google Scholar 

  68. Wang J, Buck SM, Chen Z. Sum frequency generation vibrational spectroscopy studies on protein adsorption. J Phys Chem B. 2002;106:11666–72.

    CAS  Google Scholar 

  69. Kim J, Somorjai GA. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy. J Am Chem Soc. 2003;125:3150–8.

    CAS  PubMed  Google Scholar 

  70. Kim G, Gurau M, Kim J, Cremer PS. Investigations of lysozyme adsorption at the air/water and quartz/water interfaces by vibrational sum frequency spectroscopy. Langmuir. 2002;18:2807–11.

    CAS  Google Scholar 

  71. Jung SY, Lim SM, Albertorio F, Kim G, Gurau MC, Yang RD, et al. The Vroman effect: a molecular level description of fibrinogen displacement. J Am Chem Soc. 2003;125: 12782–6.

    CAS  PubMed  Google Scholar 

  72. Chen X, Sagle LB, Cremer PS. Urea orientation at protein surfaces. J Am Chem Soc. 2007;129:15104–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Dreesen L, Sartenaer Y, Humbert C, Mani AA, Méthivier C, Pradier C, et al. Probing ligand-protein recognition with sum-frequency generation spectroscopy: the avidin-biocytin case. Chemphyschem. 2004;5:1719–25.

    CAS  PubMed  Google Scholar 

  74. Dreesen L, Sartenaer Y, Humbert C, Mani AA, Lemaire JJ, Méthivier C, et al. Sum-frequency generation spectroscopy applied to model biosensors systems. Thin Solid Films. 2004;464–465:373–8.

    Google Scholar 

  75. Wang J, Buck SM, Chen Z. The effect of surface coverage on conformation changes of bovine serum albumin molecules at the air–solution interface detected by sum frequency generation vibrational spectroscopy. Analyst. 2003;128:773–8.

    CAS  PubMed  Google Scholar 

  76. Kim J, Koffas TS, Lawrence CC, Somorjai GA. Surface structural characterization of protein- and polymer-modified polystyrene microspheres by infrared-visible sum frequency generation vibrational spectroscopy and scanning force microscopy. Langmuir. 2004;20:4640–6.

    CAS  PubMed  Google Scholar 

  77. Arkin I. Isotope-edited IR, spectroscopy for the study of membrane proteins. Curr Opin Chem Biol. 2006;10:394–401.

    CAS  PubMed  Google Scholar 

  78. Arkin IT, MacKenzie KR, Brunger AT. Site-directed dichroism as a method for obtaining rotational and orientational constraints for oriented polymers. J Am Chem Soc. 1997;119: 8973–80.

    CAS  Google Scholar 

  79. Torres J, Adams PD, Arkin IT. Use of a new label, (13)==(18)O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data. J Mol Biol. 2000;300:677–85.

    CAS  PubMed  Google Scholar 

  80. Wang J, Paszti Z, Clarke ML, Chen X, Chen Z. Deduction of structural information of interfacial proteins by combined vibrational spectroscopic methods. J Phys Chem B. 2007;111:6088–95.

    CAS  PubMed  Google Scholar 

  81. Wang J, Clarke ML, Zhang Y, Chen X, Chen Z. Using isotope-labeled proteins and sum frequency generation vibrational spectroscopy to study protein adsorption. Langmuir. 2003;19:7862–6.

    CAS  Google Scholar 

  82. Clarke ML, Chen Z. Polymer surface reorientation after protein adsorption. Langmuir. 2006;22:8627–30.

    CAS  PubMed  Google Scholar 

  83. Vroman L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature. 1962;196:476–7.

    CAS  PubMed  Google Scholar 

  84. Pászti Z, Wang J, Clarke ML, Chen Z. Sum frequency generation vibrational spectroscopy studies of protein adsorption on oxide covered Ti surfaces. J Phys Chem B. 2004;108:7779–87.

    Google Scholar 

  85. Moore WH, Krimm S. Transition dipole coupling in Amide I modes of betapolypeptides. Proc Natl Acad Sci U S A. 1975;72:4933–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Shai Y. From innate immunity to de-novo designed antimicrobial peptides. Curr Pharm Des. 2002;8:715–25.

    CAS  PubMed  Google Scholar 

  87. Huang HW. Action of antimicrobial peptides: two-state model. Biochemistry. 2000;39:8347–52.

    CAS  PubMed  Google Scholar 

  88. Wang J, Paszti Z, Even MA, Chen Z. Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model. J Phys Chem B. 2004;108:3625–32.

    CAS  Google Scholar 

  89. Knoesen A, Pakalnis S, Wang M, Wise WD, Lee N, Frank CW. Sum-frequency spectroscopy and imaging of aligned helical polypeptides. IEEE J Sel Top Quant. 2004;10:1154–63.

    CAS  Google Scholar 

  90. Clarke ML, Wang J, Chen Z. Conformational changes of fibrinogen after adsorption. J Phys Chem B. 2005;109:22027–35.

    CAS  PubMed  Google Scholar 

  91. Chen X, Wang J, Paszti Z, Wang F, Schrauben JN, Tarabara VV, et al. Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy. Anal Bioanal Chem. 2007;388:65–72.

    CAS  PubMed  Google Scholar 

  92. Cheng J, Jia YK, Zheng G, Xie XS. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys J. 2002;83:502–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Cheng JX, Xie XS. Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J Phys Chem B. 2004;108:827–40.

    CAS  Google Scholar 

  94. Volkmer A. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy. J Phys D Appl Phys. 2005;38:R59–81.

    CAS  Google Scholar 

  95. Moad AJ, Moad CW, Perry JM, Wampler RD, Goeken GS, Begue NJ, et al. NLOPredict: visualization and data analysis software for nonlinear optics. J Comp Chem. 2007;28:1996–2002.

    CAS  Google Scholar 

  96. Moad AJ, Simpson GJ. Self-consistent approach for simplifying the molecular interpretation of nonlinear optical and multiphoton phenomena. J Phys Chem A. 2005;109:1316–23.

    CAS  PubMed  Google Scholar 

  97. Perry JM, Moad AJ, Begue NJ, Wampler RD, Simpson GJ. Electronic and vibrational second-order nonlinear optical properties of protein secondary structural motifs. J Phys Chem B. 2005;109:20009–26.

    CAS  PubMed  Google Scholar 

  98. Wang J, Clarke ML, Chen Z. Polarization mapping: a method to improve sum frequency generation spectral analysis. Anal Chem. 2004;76:2159–67.

    CAS  PubMed  Google Scholar 

  99. Tamm LK, McConnell HM. Supported phospholipid bilayers. Biophys J. 1985;47:105–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Liu J, Conboy JC. Direct measurement of the transbilayer movement of phospholipids by sum-frequency vibrational spectroscopy. J Am Chem Soc. 2004;126:8376–7.

    CAS  PubMed  Google Scholar 

  101. Liu J, Conboy JC. Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy. J Am Chem Soc. 2004;126:8894–5.

    CAS  PubMed  Google Scholar 

  102. Liu J, Conboy J. 1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J. 2005;89:2522–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Messmer MC, Conboy JC, Richmond GL. Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation. J Am Chem Soc. 1995;117:8039–40.

    CAS  Google Scholar 

  104. Chen X, Tang H, Even MA, Wang J, Tew GN, Chen Z. Observing a molecular knife at work. J Am Chem Soc. 2006;128:2711–4.

    CAS  PubMed  Google Scholar 

  105. Chen X, Wang J, Kristalyn CB, Chen Z. Real-time structural investigation of a lipid bilayer during its interaction with melittin using sum frequency generation vibrational spectroscopy. Biophys J. 2007;93:866–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Hirose C, Akamatsu N, Domen K. Formulas for the analysis of surface sum‐frequency generation spectrum by CH stretching modes of methyl and methylene groups. J Chem Phys. 1992;96:997–1004.

    CAS  Google Scholar 

  107. Hirose C, Yamamoto H, Akamatsu N, Domen K. Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group. J Phys Chem. 1993;97:10064–9.

    CAS  Google Scholar 

  108. Ma G, Allen HC. DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy. Langmuir. 2006;22:5341–9.

    CAS  PubMed  Google Scholar 

  109. Voss LF, Hadad CM, Allen HC. Competition between atmospherically relevant fatty acid monolayers at the air/water interface. J Phys Chem B. 2006;110:19487–90.

    CAS  PubMed  Google Scholar 

  110. Muller M, Schins JM, Roke S, Bonn M. In: Conchello J, Cogswell CJ, Wilson T, editors. Phase transitions in a lipid monolayer observed with vibrational sum-frequency generation. SPIE Vol. 4964, 2003. p. 90–97.

    Google Scholar 

  111. Ye S, Noda H, Morita S, Uosaki K, Osawa M. Surface molecular structures of Langmuir/Blodgett films of stearic acid on solid substrates studied by sum frequency generation spectroscopy. Langmuir. 2003;19:2238–42.

    CAS  Google Scholar 

  112. Ye S, Noda H, Nishida T, Morita S, Osawa M. Cd2+−induced interfacial structural changes of Langmuir−Blodgett films of stearic acid on solid substrates: a sum frequency generation study. Langmuir. 2004;20:357–65.

    CAS  PubMed  Google Scholar 

  113. Roke S, Schins J, Mller M, Bonn M. Vibrational spectroscopic investigation of the phase diagram of a biomimetic lipid monolayer. Phys Rev Lett. 2003;90:128101.

    PubMed  Google Scholar 

  114. Bonn M, Roke S, Berg O, Juurlink F, Stamouli A, Muller M. A molecular view of cholesterol-induced condensation in a lipid monolayer. J Phys Chem B. 2004;108:19083–5.

    CAS  Google Scholar 

  115. Ramsay G. DNA chips: state-of-the art. Nat Biotechnol. 1998;16:40–4.

    CAS  PubMed  Google Scholar 

  116. Sartenaer Y, Tourillon G, Dreesen L, Lis D, Mani A, Thiry P, et al. Sum-frequency generation spectroscopy of DNA monolayers. Biosens Bioelectron. 2007;22:2179–83.

    CAS  PubMed  Google Scholar 

  117. Stokes GY, Gibbs-Davis JM, Boman FC, Stepp BR, Condie AG, Nguyen ST, et al. Making “sense” of DNA. J Am Chem Soc. 2007;129:7492–3.

    CAS  PubMed  Google Scholar 

  118. Florsheimer M, Brillert C, Fuchs H. Chemical imaging of interfaces by sum frequency microscopy. Langmuir. 1999;15:5437–9.

    Google Scholar 

  119. Shen Y, Swiatkiewicz J, Winiarz J, Markowicz P, Prasad PN. Second-harmonic and sum-frequency imaging of organic nanocrystals with photon scanning tunneling microscope. Appl Phys Lett. 2000;77:2946–8.

    CAS  Google Scholar 

  120. Humbert B, Grausem J, Burneau A, Spajer M, Tadjeddine A. Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution. Appl Phys Lett. 2001;78:135–7.

    CAS  Google Scholar 

  121. Schaller RD, Saykally RJ. Near-field infrared sum-frequency generation imaging of chemical vapor deposited zinc selenide. Langmuir. 2001;17:2055–8.

    CAS  Google Scholar 

  122. Hoffmann DMP, Kuhnke K, Kern K. Sum-frequency generation microscope for opaque and reflecting samples. Rev Sci Instrum. 2002;73:3221–6.

    CAS  Google Scholar 

  123. Kuhnke K, Hoffmann DMP, Wu XC, Bittner AM, Kern K. Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers. Appl Phys Lett. 2003;83:3830–2.

    CAS  Google Scholar 

  124. Cimatu K, Baldelli S. Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers. J Phys Chem B. 2006;110:1807–13.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Office of Naval Research (CN00014-02-1-0832), the National Science Foundation (CHE-0315857 and CHE-0449469), the Beckman Foundation, and the University of Michigan for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boughton, A.P., Chen, Z. (2014). Sum Frequency Generation Vibrational Spectroscopy: A Sensitive Technique for the Study of Biological Molecules at Interfaces. In: Smentkowski, V. (eds) Surface Analysis and Techniques in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-01360-2_8

Download citation

Publish with us

Policies and ethics