Skip to main content

Biological Tissue Imaging at Different Levels: MALDI and SIMS Imaging Combined

  • Chapter
  • First Online:
Surface Analysis and Techniques in Biology
  • 1229 Accesses

Abstract

Mass spectrometry has been employed to analyze the composition and structure of biologically relevant molecules in solution. Advances in methodology and instrumentation developments now allow the application of mass spectrometry for local biomolecular analysis directly on biological tissue surfaces; this technique is called imaging mass spectrometry (IMS). IMS is an innovative discovery tool for the biomedical sciences. This chapter describes the two main approaches relevant for molecular tissue imaging studies in the life sciences: secondary ion mass spectrometry (SIMS) imaging and matrix-assisted laser desorption and ionization (MALDI)–based imaging techniques. The benefits of imaging mass spectrometry for the fields of drug metabolism, lipidomics, and proteomics are discussed. Integrated MS imaging and proteomics protocols as well as tandem-MS imaging strategies, which are key to the identification of larger-molecular-weight compounds, are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDonnell LA, Heeren RMA. Imaging mass spectrometry. Mass Spectrom Rev. 2007;26:606–43.

    CAS  PubMed  Google Scholar 

  2. Castaing R, Slodzian G. Microanalyse par emission ionique secondaire. J Microsc. 1962;1:395–410.

    CAS  Google Scholar 

  3. Altelaar AFM, Klinkert I, Jalink K, De Lange RPJ, Adan RAH, Heeren RMA, Piersma SR. Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem. 2006;78:734–42.

    CAS  PubMed  Google Scholar 

  4. McDonnell LA, Heeren RMA, de Lange RPJ, Fletcher IW. Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging. J Am Soc Mass Spectrom. 2006;17:1195–202.

    CAS  PubMed  Google Scholar 

  5. Altelaar AFM, Luxembourg SL, McDonnell LA, Piersma SR, Heeren RMA. Imaging mass spectrometry at cellular length scales. Nat Protoc. 2007;2:1185–96.

    CAS  PubMed  Google Scholar 

  6. Heeren RMA, McDonnell LA, Amstalden ER, Altelaar AFM, Piersma SR. Why don’t biologists use SIMS; a critical evaluation of imaging MS. Appl Surf Sci. 2006;252:6827–35.

    Google Scholar 

  7. Luxembourg SL, Mize TH, McDonnell LA, Heeren RMA. High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem. 2004;76:5339–44.

    CAS  PubMed  Google Scholar 

  8. Klerk LA, Lockyer NP, Kharchenko A, MacAleese LP, Dankers PYW, Vickerman JC, Heeren RMA. C60 + secondary ion microscopy using a delay line detector. Anal Chem. 2010;82:801–7.

    CAS  PubMed  Google Scholar 

  9. Karas MI, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom. 1987;78:53–68.

    CAS  Google Scholar 

  10. Hillenkamp F, Karas M. Matrix-assisted laser desorption/ionisation, an experience. Int J Mass Spectrom. 2000;200:71–7.

    CAS  Google Scholar 

  11. Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69:4751–60.

    CAS  PubMed  Google Scholar 

  12. Stoeckli M, Farmer TB, Caprioli RM. Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument. J Am Soc Mass Spectrom. 1999;10:67–71.

    CAS  PubMed  Google Scholar 

  13. Dreisewerd K, SchĂ¼renberg M, Karas M, Hillenkamp F. Influence of the laser intensity and spot size on the desorption of molecules and ions in matrix-assisted laser desorption/ionization with a uniform beam profile. Int J Mass Spectrom. 1995;141:127–48.

    CAS  Google Scholar 

  14. Posthumus MA, Kistemaker PG, Meuzelaar HLC, Ten Noever de Brauw MC. Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules. Anal Chem. 1978;50:985–91.

    CAS  Google Scholar 

  15. Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectom Rev. 1998;17:337–66.

    CAS  Google Scholar 

  16. Zhigilei LV, Garrison BJ. Molecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids. Appl Phys Lett. 1999;74:1341–3.

    CAS  Google Scholar 

  17. Ehring H, Karas M, Hillenkamp F. Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption ionization mass spectrometry. Org Mass Spectrom. 1992;27:472–80.

    CAS  Google Scholar 

  18. Preston-Schaffter LM, Kinsel GR, Russell DH. Effects of heavy-atom substituents on matrices used for matrix-assisted laser desorption-ionization mass spectrometry. J Am Soc Mass Spectrom. 1994;5:800–6.

    CAS  PubMed  Google Scholar 

  19. Knochenmuss R, Zenobi R. MALDI ionization: the role of in-plume processes. Chem Rev. 2003;103:441–52.

    CAS  PubMed  Google Scholar 

  20. Breuker K, Knochenmuss R, Zhang J, Stortelder A, Zenobi R. Thermodynamic control of final ion distributions in MALDI: in-plume proton transfer reactions. Int J Mass Spectrom. 2003;226:211–22.

    CAS  Google Scholar 

  21. Lemaire R, Tabet JC, Ducoroy P, Hendra JB, Salzet M, Fournier I. Solid Ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem. 2006;78:809–19.

    CAS  PubMed  Google Scholar 

  22. Liebl H. Ion microprobe mass analyzer. J Appl Phys. 1967;38:5277–83.

    CAS  Google Scholar 

  23. Chabala JM, Soni KK, Li J, Gavrilov KL, Levi-Setti R. High-resolution chemical imaging with scanning ion probe SIMS. Int J Mass Spectrom. 1995;143:191–212.

    CAS  Google Scholar 

  24. Benninghoven A. Die Analyse monomolekularer Festkörperoberflächenschichten mit Hilfe der Sekundärionenemission. Z Physik. 1970;230:403–17.

    CAS  Google Scholar 

  25. Appelhans AD, Delmore JE. Comparison of polyatomic and atomic primary beams for secondary ion mass spectrometry of organics. Anal Chem. 1989;61:1087–93.

    CAS  Google Scholar 

  26. Winograd N. The magic of cluster SIMS. Anal Chem. 2005;77:142A–9.

    CAS  Google Scholar 

  27. Gillen G, Fahey A. Secondary ion mass spectrometry using cluster ion beams. Appl Surf Sci. 2002;203:209–13.

    Google Scholar 

  28. Wu KJ, Odom RW. Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Anal Chem. 1996;68:837–82.

    Google Scholar 

  29. Delcorte A, Bour J, Aubriet F, Muller JF, Bertrand P. Sample metallization for performance improvement in desorption/ionization of kilodalton molecules: quantitative evaluation, imaging secondary ion MS, and laser ablation. Anal Chem. 2003;75:6875–85.

    CAS  PubMed  Google Scholar 

  30. McDonnell LA, Piersma SR, Altelaar AFM, Mize TH, Luxembourg SL, Verhaert PDEM, van Minnen J, Heeren RMA. Subcellular imaging mass spectrometry of brain tissue. J Mass Spectrom. 2005;40:160–8.

    CAS  PubMed  Google Scholar 

  31. Jonkman HT, Michl J, King RN, Andrade JD. Low-temperature secondary positive ion mass spectrometry of neat and argon-diluted organic solids. Anal Chem. 1978;50:2078–82.

    CAS  Google Scholar 

  32. Ross MM, Colton RJ. Summary abstract: secondary ion mass spectrometry of organic adsorbates on carbon particles and liquid metal surfaces. J Vac Sci Technol A. 1983;1:441–2.

    Google Scholar 

  33. Ross MM, Colton RJ. Carbon as a sample substrate in secondary ion mass spectrometry. Anal Chem. 1983;55:150–3.

    CAS  Google Scholar 

  34. Barber M, Bordoli RS, Sedgwick RD, Tyler AN. J Chem Soc Chem Comm. 1981;325–327.

    Google Scholar 

  35. Gillen G, Christiansen JW, Tsong IST, Kimball B, Williams P, Cooks RG. Sputter yields of ammonium chloride and solid glycerol. Rapid Commun Mass Spectrom. 1988;2:67–8.

    CAS  Google Scholar 

  36. Bennett J, Gillen G. Formation and emission of tetraalkylammonium salt molecular ions sputtered from a gelatin matrix. J Am Soc Mass Spectrom. 1993;4:930–7.

    CAS  PubMed  Google Scholar 

  37. Busch KL, Hsu BH, Xie YX, Cooks RG. Matrix effects in secondary ion mass spectrometry. Anal Chem. 1983;55:1157–60.

    CAS  Google Scholar 

  38. Liu LK, Busch KL, Cooks RG. Matrix-assisted secondary ion mass spectra of biological compounds. Anal Chem. 1981;53:109–13.

    CAS  Google Scholar 

  39. Wittmaack K, Szymczak W, Hoheisel G, Tuszynski W. Time-of-flight secondary ion mass spectrometry of matrix-diluted oligon- and polypeptides bombarded with slow and fast projectiles: positive and negative matrix and analyte ion yields, background signals, and sample aging. J Am Soc Mass Spectrom. 2000;11:553–63.

    CAS  PubMed  Google Scholar 

  40. Delcorte A, Medard N, Bertrand P. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition. Anal Chem. 2002;74:4955–68.

    CAS  PubMed  Google Scholar 

  41. Delcorte A, Bertrand P. Interest of silver and gold metallization for molecular SIMS and SIMS imaging. Appl Surf Sci. 2004;231–2:250–5.

    Google Scholar 

  42. Taban IM, Altelaar AFM, Fuchser J, van der Burgt YEM, McDonnell LA, Baykut G, Heeren RMA. Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry. J Am Soc Mass Spectrom. 2007;18:145–51.

    Google Scholar 

  43. Tempez A, Ugarov M, Egan T, Schultz JA, Novikov A, Della-Negra S, Lebeyec Y, Pautrat M, Caroff M, Smentkowski VS, Wang H-YJ, Jackson SN, Woods AS. Matrix implanted laser desorption ionization (MILDI) combined with ion mobility-mass spectrometry for bio-surface analysis. J Proteome Res. 2005;4:540–5.

    CAS  PubMed  Google Scholar 

  44. Bunch J, Clench MR, Richards DS. Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:3051–60.

    CAS  PubMed  Google Scholar 

  45. Jackson SN, Ugarov M, Egan T, Post JD, Langlais D, Schultz JA, Woods AS. MALDI–ion mobility–TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom. 2007;42:1093–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. MĂ¼ller A, Benninghoven A. Investigation of surface reactions by the static method of secondary ion mass spectrometry: III. The oxidation of vanadium, niobium and tantalum in the monolayer range. Surf Sci. 1973;39:427–36.

    Google Scholar 

  47. Plog C, Wiedmann L, Benninghoven A. Empirical formula for the calculation of secondary ion yields from oxidized metal surfaces and metal oxides. Surf Sci. 1977;67:565–80.

    CAS  Google Scholar 

  48. Standing KG. Timing the flight of biomolecules: a personal perspective. Int J Mass Spectrom. 2000;200:597–610.

    CAS  Google Scholar 

  49. Wirth A, Thompson G, Gregory SP, editors. In: Benninghoven A, editor. Secondary ion mass spectrometry SIMS VI. New York: Wiley;. 1987. 639 pp.

    Google Scholar 

  50. Waugh AR, Kingham DR, Hearn MJ, Briggs DA, editors. In: Benninghoven A, editor. Secondary ion mass spectrometry SIMS VI. New York: Wiley; 1987. 231 pp.

    Google Scholar 

  51. Mullock SJ, Reich DF, Dingle T, editors. In: Secondary ion mass spectrometry SIMS VII. New York: Wiley; 1989. 847 pp.

    Google Scholar 

  52. Stephens WE, Serin B, Meyerhof WE. A method for measuring effective contact e.m.f. between a metal and a semi-conductor. Phys Rev. 1946;69:42.

    CAS  Google Scholar 

  53. Schwieters J, Cramer HG, Heller T, Jurgens U, Niehuis E, Zehnpfenning J, Benninghoven A. High mass resolution surface imaging with a time-of-flight secondary ion mass-spectroscopy scanning microprobe. J Vac Sci Technol A. 1991;9:2864–71.

    CAS  Google Scholar 

  54. Brown RS, Lennon JJ. Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal Chem. 1998;1995:67.

    Google Scholar 

  55. Vestal ML, Juhasz P, Martin SA. Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1995;9:1044.

    CAS  Google Scholar 

  56. Laiko VV, Dodonov AF. Resolution and spectral-line shapes in the reflecting time-of-flight mass-spectrometer with orthogonally injected ions. Rapid Commun Mass Spectrom. 1994;8:720–6.

    CAS  Google Scholar 

  57. Hsieh Y, Casale R, Fukuda E, Chen J, Knemeyer I, Wingate J, Morrison R, Korfmacher W. Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom. 2006;20:965–72.

    CAS  PubMed  Google Scholar 

  58. Taban IM, Altelaar AFM, van der Burgt YEM, McDonnell LA, Baykut G, Heeren RMA. Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry. J Am Soc Mass Spectrom. 2007;18:145–51.

    CAS  PubMed  Google Scholar 

  59. Kanu AB, Dwivedi P, Tam M, Matz L, Hill Jr HH. Ion mobility-mass spectrometry. J Mass Spectrom. 2008;43:1–22.

    CAS  PubMed  Google Scholar 

  60. Gillig KJ, Ruotolo B, Stone EG, Russell DH, Fuhrer K, Gonin M, Schultz AJ. Coupling high-pressure MALDI with ion mobility/orthogonal time-of-flight mass spectrometry. Anal Chem. 2000;72:3965–71.

    CAS  PubMed  Google Scholar 

  61. Stauber J, Lemaire R, Wisztorski M, AĂ¯t-Menguellet S, Lucot JP, Vinatier D, Desmond A, Deschamps M, Proess G, Rudlof I, Salzet M, Fournier I. New developments in MALDI imaging mass spectrometry for pathological proteomic studies; introduction to a novel concept, the specific MALDI imaging. Mol Cell Proteomics. 2006;5:S247.

    Google Scholar 

  62. Lawrence EO, Livingston MS. The production of high speed light ions without the use of high voltages. Phys Rev. 1932;40:19.

    CAS  Google Scholar 

  63. Comisarow MB, Marshall AG. Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett. 1974;25:282–3.

    CAS  Google Scholar 

  64. Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev. 1998;17:1–35.

    CAS  PubMed  Google Scholar 

  65. Ledford Jr EB, Rempel DL, Gross ML. Space charge effects in Fourier transform mass spectrometry. Mass calibration. Anal Chem. 1984;56:2744–8.

    CAS  PubMed  Google Scholar 

  66. Shi SDH, Drader JJ, Freitas MA, Hendrickson CL, Marshall AG. Comparison and interconversion of the two most common frequency-to-mass calibration functions for Fourier transform ion cyclotron resonance mass spectrometry. Int J Mass Spectrom. 2000;195–196:591–8.

    Google Scholar 

  67. Wisztorski M, Verplanck N, Thomy V, Stauber J, Camart JC, Salzet M, Fournier I. Use of masks in MALDI-MSI: an easy tool for increasing spatial resolution of images by decreasing irradiated area. Indianapolis: American Society of Mass Spectrometry; 2007.

    Google Scholar 

  68. Wisztorski M, Croix D, Macagno E, Fournier I, Salzet M. Molecular MALDI imaging: an emerging technology for neuroscience studies. Dev Neurobiol. 2008;68:845–58.

    CAS  PubMed  Google Scholar 

  69. Taylor CF, Paton NW, Lilley KS, Binz P-A, Julian RK, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR, Hermjakob H. The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol. 2007;25:887–93.

    CAS  PubMed  Google Scholar 

  70. Orchard S, Hermjakob H. The HUPO proteomics standards initiative—easing communication and minimizing data loss in a changing world. Brief Bioinform. 2008;9:166–73.

    CAS  PubMed  Google Scholar 

  71. Sköld K, Svensson M, Norrman M, Sjögren B, Svenningsson P, Andrén PE. The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: Stathmin 2–20 and peptides as sample quality indicators. Proteomics. 2007;7:4445–56.

    PubMed  Google Scholar 

  72. Theodorsson E, Stenfors C, Mathé AA. Microwave irradiation increases recovery of neuropeptides from brain tissues. Peptides. 1990;11:1191–7.

    CAS  PubMed  Google Scholar 

  73. Metz B, Kersten GFA, Hoogerhout P, Brugghe HF, Timmermans HAM, de Jong A, Meiring H, ten Hove J, Hennink WE, Crommelin DJA, Jiskoot W. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem. 2004;279:6235–43.

    CAS  PubMed  Google Scholar 

  74. Stauber J, Lemaire R, Franck J, Bonnel D, Croix D, Day R, Wisztorski M, Fournier I, Salzet M. MALDI imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting. J Proteome Res. 2008;7:969.

    CAS  PubMed  Google Scholar 

  75. Lemaire R, Desmons A, Tabet JC, Day R, Salzet M, Fournier I. Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J Proteome Res. 2007;6:1295–305.

    CAS  PubMed  Google Scholar 

  76. Crockett DK, Lin Z, Vaughn CP, Lim MS, Elenitoba-Johnson KSJ. Identification of proteins from formalin-fixed paraffin-embedded cells by LC-MS//MS. Lab Invest. 2005;85:1405–15.

    CAS  PubMed  Google Scholar 

  77. Chaurand P, Caprioli RM. Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis. 2002;23:3125–35.

    CAS  PubMed  Google Scholar 

  78. Stoeckli M, Staab D, Staufenbiel M, Wiederhold KH, Signor L. Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem. 2002;311:33–9.

    CAS  PubMed  Google Scholar 

  79. Lemaire R, Wisztorski M, Desmons A, Tabet JC, Salzet M, Fournier I. MALDI-MS direct tissue analysis of proteins: improving signal sensitivity using organic treatments. Anal Chem. 2006;78:7145–53.

    CAS  PubMed  Google Scholar 

  80. Altelaar AFM, van Minnen J, Jiménez CR, Heeren RMA, Piersma SR. Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. Anal Chem. 2005;77:735–41.

    CAS  PubMed  Google Scholar 

  81. Lemaire R, AĂ¯t-Menguellet S, Stauber J, Marchaudon V, Lucot JP, Collinet P, Farine MO, Vinatier D, Day R, Ducoroy P, Salzet M, Fournier I. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res. 2007;6:4127–34.

    CAS  PubMed  Google Scholar 

  82. Armin Holle AH, Kayser M, Höhndorf J. Optimizing UV laser focus profiles for improved MALDI performance. J Mass Spectrom. 2006;41:705–16.

    PubMed  Google Scholar 

  83. Lemaire R, Stauber J, Wisztorski M, Van Camp C, Desmons A, Deschamps M, Proess G, Rudlof I, Woods AS, Day R, Salzet M, Fournier I. Tag-mass: specific molecular imaging of transcriptome and proteome by mass spectrometry based on photocleavable tag. J Proteome Res. 2007;6:2057–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Groseclose MR, Andersson M, Hardesty WM, Caprioli RM. Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom. 2007;42:254–62.

    CAS  PubMed  Google Scholar 

  85. Chaurand P, Rahman MA, Hunt T, Mobley JA, Gu G, Latham JC, Caprioli RM, Kasper S. Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics. 2008;7:411–23.

    CAS  PubMed  Google Scholar 

  86. Luxembourg SL, McDonnell LA, Duursma M, Guo X, Heeren RMA. Effect of local matrix crystal variations in matrix-assisted ionization techniques for mass spectrometry. Anal Chem. 2003;75:2333–41.

    CAS  PubMed  Google Scholar 

  87. Delcorte A. Matrix-enhanced secondary ion mass spectrometry: the alchemist’s solution? Appl Surf Sci. 2006;252:6582–7.

    CAS  Google Scholar 

  88. Wilfried Szymczak KW. Effect of water treatment on analyte and matrix ion yields in matrix-assisted time-of-flight secondary ion mass spectrometry: the case of insulin in and on hydroxycinnamic acid. Rapid Commun Mass Spectrom. 2002;16:2025–33.

    PubMed  Google Scholar 

  89. McArthur SL, Vendettuoli MC, Ratner BD, Castner DG. Methods for generating protein molecular ions in ToF-SIMS. Langmuir. 2004;20:3704–9.

    CAS  PubMed  Google Scholar 

  90. Adriaensen L, Vangaever F, Gijbels R. Metal-assisted secondary ion mass spectrometry: influence of Ag and Au deposition on molecular ion yields. Anal Chem. 2004;76:6777–85.

    CAS  PubMed  Google Scholar 

  91. Adriaensen L, Vangaever F, Lenaerts J, Gijbels R. Matrix-enhanced secondary ion mass spectrometry: the influence of MALDI matrices on molecular ion yields of thin organic films. Rapid Commun Mass Spectrom. 2005;19:1017–24.

    CAS  Google Scholar 

  92. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nat Insights. 2003;422:198–207.

    CAS  Google Scholar 

  93. Garrison BJ, Winograd N. Ion beam spectroscopy of solids and surfaces. Science. 1982;216:805–12.

    CAS  PubMed  Google Scholar 

  94. Li KW, Smit AB, Geraerts WPM. Structural and functional characterization of neuropeptides involved in the control of male mating behavior of Lymnaea stagnalis. Peptides. 1992;13:633–8.

    CAS  PubMed  Google Scholar 

  95. Hanton SD, Clark PAC, Owens KG. Investigations of matrix-assisted laser desorption/ionization sample preparation by time-of-flight secondary ion mass spectrometry. J Am Soc Mass Spectrom. 1999;10:104–11.

    CAS  Google Scholar 

  96. Stoeckli M, Staab D, Schweitzer A, Gardiner J, Seebach D. Imaging of a [beta]-peptide distribution in whole-body mice sections by MALDI mass spectrometry. J Am Soc Mass Spectrom. 2007;18:1921–4.

    CAS  PubMed  Google Scholar 

  97. van Veelen P, Jimenez C, Li K, Wildering W, Geraerts W, Tjaden U, van der Greef J. Direct peptide profiling of single neurons by matrix-assisted laser-desorption ionization mass-spectrometry. Org Mass Spectrom. 1993;28:1542–6.

    Google Scholar 

  98. Garden RW, Moroz LL, Moroz TP, Shippy SA, Sweedler JV. Excess salt removal with matrix rinsing: direct peptide profiling of neurons from marine invertebrates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom. 1996;31:1126–30.

    CAS  PubMed  Google Scholar 

  99. Redeker V, Toullec J-Y, Vinh J, Rossier J, Soyez D. Combination of peptide profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunodetection on single glands or cells. Anal Chem. 1998;70:1805–11.

    CAS  PubMed  Google Scholar 

  100. Stoeckli M, Chaurand P, Caprioli RM. Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem. 1999;71:5263–70.

    Google Scholar 

  101. Garden RW, Sweedler JV. Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal Chem. 2000;72:30–6.

    CAS  PubMed  Google Scholar 

  102. Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001;7:493–6.

    CAS  PubMed  Google Scholar 

  103. Rubakhin SS, Greenough WT, Sweedler JV. Spatial profiling with MALDI MS: distribution of neuropeptides within single neurons. Anal Chem. 2003;75:5374–80.

    CAS  PubMed  Google Scholar 

  104. Kruse R, Sweedler JV. Spatial profiling invertebrate ganglia using MALDI MS. J Am Soc Mass Spectrom. 2003;14:752–9.

    CAS  PubMed  Google Scholar 

  105. Monroe EB, Jurchen JC, Lee J, Rubakhin SS, Sweedler JV. Vitamin E imaging and localization in the neuronal membrane. J Am Chem Soc. 2005;127:12152.

    CAS  PubMed  Google Scholar 

  106. Hintersteiner M, Enz A, Frey P, Jaton A-L, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Stoeckli M, Wiederhold K-H, Gremlich H-U. In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol. 2005;23:577–83.

    CAS  PubMed  Google Scholar 

  107. Stauber J, Lemaire R, Wisztorski M, AĂ¯t-Menguellet S, Lucot JP, Vinatier D, Desmond A, Deschamps M, Proess G, Rudlof I, Salzet M, Fournier I. New developments in MALDI imaging mass spectrometry for pathological proteomic studies; introduction to a novel concept, the specific MALDI imaging. Mol Cell Proteom. 2006;5:S247.

    Google Scholar 

  108. Baluya DL, Garrett TJ, Yost RA. Automated MALDI matrix deposition method with Inkjet printing for imaging mass spectrometry. Anal Chem. 2007;79:6862–7.

    CAS  PubMed  Google Scholar 

  109. Hsieh Y, Chen J, Korfmacher WA. Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry. J Pharmacol Toxicol Meth. 2007;55:193–200.

    Google Scholar 

  110. Atkinson SJ, Loadman PM, Sutton C, Patterson LH, Clench MR. Examination of the distribution of the bioreductive drug AQ4N and its active metabolite AQ4 in solid tumours by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:1271–6.

    CAS  PubMed  Google Scholar 

  111. Signor L, Varesio E, Staack RF, Starke V, Richter WF, Hopfgartner G. Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J Mass Spectrom. 2007;42:900–9.

    CAS  PubMed  Google Scholar 

  112. Rohner TC, Staab D, Stoeckli M. MALDI mass spectrometric imaging biological tissue sections. Mech Ageing Dev. 2004;126:177–85.

    Google Scholar 

  113. Gusev AI, Wilkinson WR, Proctor A, Hercules DM. Direct quantitative analysis of peptides using matrix assisted laser desorption ionization. Fresenius J Anal Chem. 1996;354:455–63.

    CAS  Google Scholar 

  114. Wilkinson WR, Gusev AI, Proctor A, Houalla M, Hercules DM. Selection of internal standards for quantitative analysis by matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry. Anal Bioanal Chem. 1997;357:241–8.

    CAS  Google Scholar 

  115. Hopfgartner G, Varesio E, Stoeckli M. Matrix-assisted laser desorption/ionization mass spectrometric imaging of complete rat sections using a triple quadrupole linear ion trap. Rapid Commun Mass Spectrom. 2009;23:733–6.

    CAS  PubMed  Google Scholar 

  116. Amann JM, Chaurand P, Gonzalez A, Mobley JA, Massion PP, Carbone DP, Caprioli RM. Selective profiling of proteins in lung cancer cells from fine-needle aspirates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Cancer Res. 2006;12:5142–50.

    CAS  PubMed  Google Scholar 

  117. Burrell MM, Earnshaw CJ, Clench MR. Imaging matrix assisted laser desorption Ionization mass spectrometry: a technique to map plant metabolites within tissues at high spatial resolution. J Exp Bot. 2007;58:757–63.

    CAS  PubMed  Google Scholar 

  118. Bunch J, Burrell MM, Clench MR. MALDI imaging to reveal metabolite profiles in potato tubers. Abstract/Comp Biochem Physiol A. 2004;137:147–60.

    Google Scholar 

  119. Mullen AK, Clench MR, Crosland S, Sharples KR. Determination of agrochemical compounds in soya plants by imaging matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:2507–16.

    CAS  PubMed  Google Scholar 

  120. Jonathan Stauber, Luke MacAleese J, Franck, Marten Snell, Emmanuelle Claude, basak KĂ¼krer Kaletas, Ingrid van der Wiel, Maxensce Wisztorski, Isabelle Fournier and Ron M.A. Heeren JASMS. On-Tissue Protein Identification and Imaging by MALDI-Ion Mobility Mass Spectrometry. 2010;21:338–47.

    Google Scholar 

  121. Robinson S, Warburton K, Seymour M, Clench M, Thomas-Oates J. Localization of water-soluble carbohydrates in wheat stems using imaging matrix-assisted laser desorption/ionization mass spectrometry. New Phytol. 2006;173:428–44.

    Google Scholar 

  122. Woods AS, Wang HY, Jackson SN. A snapshot of tissue glycerolipids. Curr Pharm Des. 2007;13:3344–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Kahn E, Tessier C, Lizard G, Petiet A, Brau F, Clement O, Frouin F, Jourdain JR, Guiraud-Vitaux F, Colas-Linhart N, Siauve N, Cuenod CA, Frija G, Todd-Pokropek A. Distribution of injected MRI contrast agents in mouse livers studied by confocal and SIMS microscopy. Anal Quant Cytol Histol. 2002;24:295–302.

    PubMed  Google Scholar 

  124. Langstrom B, Andren PE, Lindhe O, Svedberg M, Hall H. In vitro imaging techniques in neurodegenerative diseases. Mol Imaging Biol. 2007;9:161–75.

    PubMed  Google Scholar 

  125. Kahn E, Tessier C, Lizard G, Petiet A, Bernengo GC, Coulaud D, Fourré C, Frouin F, Clément O, Jourdain JR, Delain E, Guiraud-Vitaux F, Colas-Linhart N, Siauve N, Cuenod CA, Frija G, Todd-Pokropek A. Analysis of the distribution of MRI contrast agents in the livers of small animals by means of complementary microscopies. Cytometry. 2003;51A:97–106.

    CAS  Google Scholar 

  126. Acquadro E, Cabella C, Ghiani S, Miragoli L, Bucci EM, Corpillo D. Matrix-assisted laser desorption ionization imaging mass spectrometry detection of a magnetic resonance imaging contrast agent in mouse liver. Anal Chem. 2009;81:2779–84.

    CAS  PubMed  Google Scholar 

  127. Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M. Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem. 2008;80:878–85.

    CAS  PubMed  Google Scholar 

  128. Stauber J, KĂ¼krer Kaletas B, van der Wiel IM, Snel MF, Claude E, Heeren RMA. Ion mobility imaging mass spectrometry: a new tool for in situ identification proceedings, ASMS Denver. 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron M. A. Heeren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stauber, J., Heeren, R.M.A. (2014). Biological Tissue Imaging at Different Levels: MALDI and SIMS Imaging Combined. In: Smentkowski, V. (eds) Surface Analysis and Techniques in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-01360-2_5

Download citation

Publish with us

Policies and ethics