Skip to main content

Biomolecular Analysis by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

  • Chapter
  • First Online:
Surface Analysis and Techniques in Biology

Abstract

The use of time-of-flight secondary ion mass spectrometry (ToF-SIMS) for biomolecular analysis has made tremendous progress in recent years. This chapter will outline the principal aspects of ToF-SIMS as well as recent technical developments that have made surface mass spectrometry so valuable for this field. Furthermore, an overview on relevant biochemical applications based on the four essential operational modes—spectrometry, imaging, depth profiling, and 3D analysis—will be given. The applications range from the analysis of Langmuir–Blodgett films and tissue sections to the analysis of whole cells. With these results in mind, we will discuss the chances and limitations of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Lists of the composition and mass-to-charge ratio of typical secondary ions characteristic of amino acids can be found, for example, in a study by Michel et al. [55].

References

  1. Pacholski ML, Winograd N. Imaging with mass spectrometry. Chem Rev. 1999;99:2977–3005.

    CAS  PubMed  Google Scholar 

  2. Belu AM, Graham DJ, Castner DG. Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials. 2003;24(21):3635–53.

    CAS  PubMed  Google Scholar 

  3. Brunelle A, Touboul D, Laprevote O. Biological tissue imaging with time-of-flight secondary ion mass spectrometry. J Mass Spectrom. 2005;40:985–99.

    CAS  PubMed  Google Scholar 

  4. McDonnell LA, Heeren RM. Imaging mass spectrometry. Mass Spectrom Rev. 2007;26(4):606–43.

    CAS  PubMed  Google Scholar 

  5. Breitenstein D, et al. The chemical composition of animal cells and their intracellular compartments reconstructed from 3D mass spectrometry. Angew Chem Int Ed Engl. 2007;46(28):5332–5.

    CAS  PubMed  Google Scholar 

  6. Benninghoven A. The history of static SIMS: a personal perspective. In: Vickerman JC, editor. ToF-SIMS. Surface analysis by mass spectrometry. Huddersfield: IM Publications; 2001. p. 41–74.

    Google Scholar 

  7. Guerquin-Kern J-L, et al. Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta. 2005;1724:228–38.

    CAS  PubMed  Google Scholar 

  8. Garrison BJ. Atoms, clusters and photons: energetic probes for mass spectrometry. Appl Surf Sci. 2006;252:6409–12.

    CAS  Google Scholar 

  9. Sigmund P. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys Rev. 1969;184:38.

    Google Scholar 

  10. Sigmund P. Erratum: theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys Rev. 1969;187:768.

    Google Scholar 

  11. Sigmund P. Collision theory of displacement damage, ion ranges, and sputtering. Revue Roumaine de Physique. 1972;1106(17):823.

    Google Scholar 

  12. Thompson MW. The energy spectrum of ejected atoms during the high energy sputtering of gold. Philos Mag. 1968;414(18):377.

    Google Scholar 

  13. Hagenhoff B, Rading D. Ion beam techniques: surface mass spectrometry. In: Rivière JC, Myhra S, editors. Handbook of surface and interface analysis. New York/Basel/Hong Kong: Marcel Dekker; 1998. p. 209–346.

    Google Scholar 

  14. Vickerman JC. TOF-SIMS: an overview. In: Vickerman JC, Briggs D, editors. ToF-SIMS—surface analysis by mass spectrometry. Manchester/Chichester: IM Publications; 2001.

    Google Scholar 

  15. Benninghoven A, Rüdenauer FG, Werner HW. Secondary ion mass spectrometry. Basic concepts, instrumental aspects, applications and trends. New York: Wiley; 1987. p. 761–949.

    Google Scholar 

  16. Hagenhoff B. High resolution surface analysis by TOF-SIMS. Mikrochim Acta. 2000;132:259–71.

    CAS  Google Scholar 

  17. Urbassek HM. Status of cascade theory. In: Vickerman JC, editor. ToF-SIMS. Suface analysis by mass spectrometry. Huddersfield: IM Publications; 2001. p. 139–60.

    Google Scholar 

  18. McLafferty FW, Turecek F. Interpretation of mass spectra. Mill Valley: University Science Books; 1993.

    Google Scholar 

  19. Chandra S. 3D subcellular imaging in cryogenically prepared single cells. Appl Surf Sci. 2004;231–232:467–9.

    Google Scholar 

  20. Galle P, et al. Subcellular localization of aluminium and indium in the rat kidney. Appl Surf Sci. 2004;231–232:475–8.

    Google Scholar 

  21. Chandra S, Smith DR, Morrison GH. Subcellular imaging by dynamic SIMS ion microscopy. Anal Chem. 2000;72(3):104A–14.

    CAS  PubMed  Google Scholar 

  22. Levi-Setti R, et al. Ion microprobe imaging of 44Ca-labeled mammalian chromosomes. Appl Surf Sci. 2004;231–232:479–84.

    Google Scholar 

  23. Gillen G, Roberson SV. Preliminary evaluation of an SF-(5) + polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. Rapid Commun Mass Spectrom. 1998;12:1303–12.

    CAS  PubMed  Google Scholar 

  24. Kötter F, Benninghoven A. Secondary ion emission from polymer surfaces under Ar+, Xe + and SF-(5) + ion bombardment. Appl Surf Sci. 1998;133:47–57.

    Google Scholar 

  25. Weibel DE, Lockyer N, Vickerman JC. C60 cluster ion bombardment of organic surfaces. Appl Surf Sci. 2004;231–232:146–52.

    Google Scholar 

  26. Wong SCC, et al. Development of a C60 + ion gun for static SIMS and chemical imaging. Appl Surf Sci. 2003;203–204:219–22.

    Google Scholar 

  27. Weibel D, et al. A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal Chem. 2003;75(7):1754–64.

    CAS  PubMed  Google Scholar 

  28. Davies N, et al. Development and experimental application of a gold liquid metal ion source. Appl Surf Sci. 2003;203–204:223–7.

    Google Scholar 

  29. Kollmer F. Cluster primary ion bombardment of organic materials. Appl Surf Sci. 2004;231–232:153–8.

    Google Scholar 

  30. Russo MF, Wojciechowski IA, Garrison BJ. Sputtering of amorphous ice induced by C60 and Au3 clusters. Appl Surf Sci. 2006;252:6423–5.

    CAS  Google Scholar 

  31. Winograd N. The magic of cluster SIMS. Anal Chem. 2005;77(7):143A–9A. doi:10.1021/ac053355f.

    Google Scholar 

  32. Wucher A. Molecular secondary ion formation under cluster bombardment: a fundamental review. Appl Surf Sci. 2006;252:6482–9.

    CAS  Google Scholar 

  33. Benguerba M, et al. Impact of slow gold cluster on various solids: non-linear effects in secondary emission. Nucl Instrum Meth B. 1991;62:8–22.

    Google Scholar 

  34. Kersting R, et al. Influence of primary ion bombardment conditions on the emission of molecular secondary ions. Appl Surf Sci. 2004;231/232:261–4.

    Google Scholar 

  35. Castner D. Surface science: view from the edge. Nature. 2003;422:129–30.

    CAS  PubMed  Google Scholar 

  36. Kötter F, Benninghoven A. Secondary ion emission from polymer surfaces under Ar+, Xe+ and SF5 + ion bombardment. Appl Surf Sci. 1998;133:47–57.

    Google Scholar 

  37. Stapel D, Brox O, Benninghoven A. Secondary ion emission from arachoidic acid LB-layers under Ar+, Xe+, Ga+ and SF-(5) + primary ion bombardment. Appl Surf Sci. 1999;140:156–67.

    CAS  Google Scholar 

  38. Stapel D, Benninghoven A. Application of atomic and molecular primary ions for TOF-SIMS analysis of additive containing polymer surfaces. Appl Surf Sci. 2001;174:261–70.

    CAS  Google Scholar 

  39. Appelhans AD, Delmore JE. Comparison of polyatomic and atomic primary beams for secondary ion mass spectrometry of organics. Anal Chem. 1989;61:1087–93.

    CAS  Google Scholar 

  40. Conlan XA, Lockyer NP, Vickerman JC. Is proton cationization promoted by polyatomic primary ion bombardment during time-of-flight secondary ion mass spectrometry analysis of frozen aqueous solutions? Rapid Commun Mass Spectrom. 2006;20:1327–34.

    CAS  PubMed  Google Scholar 

  41. Wucher A, et al. Molecular depth profiling in ice matrices using C-60 projectiles. Appl Surf Sci. 2004;231–232:68–71.

    Google Scholar 

  42. Cheng J, et al. Direct comparison of Au3 + and C60 + cluster projectiles in SIMS molecular depth profiling. J Am Soc Mass Spectrom. 2007;18:406–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Mahoney CM. Cluster secondary ion mass spectrometry of polymers and related materials. Mass Spectrom Rev. 2009;29(2):247–93.

    Google Scholar 

  44. Cheng J, Wucher A, Winograd N. Molecular depth profiling with cluster ion beams. J Phys Chem B. 2006;110:8329–36.

    CAS  PubMed  Google Scholar 

  45. Hill R. Primary ion systems. In: Vickerman JC, editor. ToF-SIMS. Surface mass spectrometry. Huddersfield: IM Publications; 2001. p. 95–112.

    Google Scholar 

  46. Niehuis E, Grehl T. Dual beam depth profiling. In: Vickerman JC, Briggs D, editors. TOF-SIMS: surface analysis by mass spectrometry. Charlton: IM Publications; 2001. p. 753–78.

    Google Scholar 

  47. Niehuis E, et al. Design and performance of a reflectron based time-of-flight secondary ion mass spectrometer with electrodynamic primary ion mass separation. J Vac Sci Technol A. 1987;A5:1243–6.

    Google Scholar 

  48. Nygren H, et al. Localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex with imaging TOF-SIMS equipped with a bismuth cluster ion source. Biochim Biophys Acta. 2005;1737(2–3):102–10.

    CAS  PubMed  Google Scholar 

  49. Schueler BW. Time-of-flight mass analysers. In: Vickerman JC, editor. ToF-SIMS. Surface analysis by mass spectrometry. Huddersfield: IM Publications; 2001. p. 75–94.

    Google Scholar 

  50. Hagenhoff B, et al. Time-of-flight secondary ion mass-spectrometry of insulators with pulsed charge compensation by low-energy electrons. J Vac Sci Technol A. 1989;10(5):3056–64.

    Google Scholar 

  51. Gilmore IS, Seah MP. Electron flood gun damage in the analysis of polymers and organics in time-of-flight SIMS. Appl Surf Sci. 2002;187:89–100.

    CAS  Google Scholar 

  52. Breitenstein D, et al. The chemical composition of animal cells and their intracellular compartments reconstructed from 3D mass spectrometry. Angew Chem Int Edit. 2006. Submitted for publication.

    Google Scholar 

  53. Mantus DS, et al. Static secondary ion mass spectrometry of adsorbed proteins. Anal Chem. 1993;65:1431–8.

    CAS  PubMed  Google Scholar 

  54. McArthur SL, et al. Methods for generating protein molecular ions in ToF-SIMS. Langmuir. 2004;20:3704–9.

    CAS  PubMed  Google Scholar 

  55. Michel R, et al. Influence of PEG architecture on protein adsorption and conformation. Langmuir. 2005;21(26):12327–32. doi:10.1021/la051726h. Research article.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Sole-Domenech S, et al. Analysis of opioid and amyloid peptides using time-of-flight secondary ion mass spectrometry. Anal Chem. 2010;82(5):1964–74.

    CAS  PubMed  Google Scholar 

  57. Wittmaack K, et al. Time-of-flight secondary ion mass spectrometry of matrix-diluted oligo- and polypeptides bombarded with slow and fast projectiles: positive and negative matrix and analyte ion yields, background signals, and sample aging. J Am Soc Mass Spectrom. 2000;11:553–63.

    CAS  PubMed  Google Scholar 

  58. Wu KJ, Odom RW. Biological material analysis by matrix-enhanced SIMS. In: Gillen G et al., editors. Secondary ion mass spectrometry XI. Chichester: Wiley; 1998. p. 525–8.

    Google Scholar 

  59. Wagner MS, Horbett TA, Castner DG. Characterizing multicomponent adsorbed protein films using electron spectroscopy for chemical analysis, time-of-flight secondary ion mass spectrometry, and radiolabeling: capabilities and limitations. Biomaterials. 2003;24(11):1897–908.

    CAS  PubMed  Google Scholar 

  60. Jabs HU, et al. High performance liquid chromatography and time-of-flight secondary ion mass spectrometry: a new dimension in structural analysis of apolipoproteins. J Lipid Res. 1986;27(6):613–21.

    CAS  PubMed  Google Scholar 

  61. von Eckardstein A, et al. Site-specific methionine sulfoxide formation is the structural basis of chromatographic heterogeneity of apolipoproteins A-I, C-II, and C-III. J Lipid Res. 1991;32(9):1465–76.

    Google Scholar 

  62. von Eckardstein A, et al. Apolipoprotein A-I variants. Naturally occurring substitutions of proline residues affect plasma concentration of apolipoprotein A-I. J Clin Invest. 1989;84(6):1722–30.

    Google Scholar 

  63. Cheran L-E, Vukovich D, Thompson M. Imaging TOF-SIMS analysis of oligonucleotide microarrays. Analyst. 2003;128:126–9.

    CAS  PubMed  Google Scholar 

  64. Lee C-Y, et al. Evidence of impurities in thiolated single-stranded DNA oligomers and their effect on DNA self-assembly on gold. Langmuir. 2005;21:5134–41.

    CAS  PubMed  Google Scholar 

  65. May CJ, Canavan HE, Castner DG. Quantitative X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterization of the components in DNA. Anal Chem. 2004;76(4):1114–22.

    CAS  PubMed  Google Scholar 

  66. Arlinghaus HF, et al. DNA sequencing with ToF-SIMS. Surf Interface Anal. 2002;33:35–9.

    Google Scholar 

  67. Berman ES, et al. Distinguishing monosaccharide stereo- and structural isomers with TOF-SIMS and multivariate statistical analysis. Anal Chem. 2006;78(18):6497–503.

    CAS  PubMed  Google Scholar 

  68. Roddy TP, et al. Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry. Anal Chem. 2002;74(16):4011–9.

    CAS  PubMed  Google Scholar 

  69. Leufgen KM, et al. Imaging time-of-flight secondary ion mass spectrometry allows visualization and analysis of coexisting phases in Langmuir–Blodgett films. Langmuir. 1996;12:1708–11.

    CAS  Google Scholar 

  70. Roddy TP, et al. Identification of cellular sections with imaging mass spectrometry following freeze fracture. Anal Chem. 2002;74(16):4020–6.

    CAS  PubMed  Google Scholar 

  71. Malmberg P, et al. Analysis of bone minerals by time-of-flight secondary ion mass spectrometry: a comparative study using monoatomic and cluster ions sources. Rapid Commun Mass Spectrom. 2007;21(5):745–9.

    CAS  PubMed  Google Scholar 

  72. Adriaensen L, Vangaever F, Gijbels R. Metal-assisted secondary ion mass spectrometry: influence of Ag and Au deposition on molecular ion yields. Anal Chem. 2004;76(22):6777–85.

    CAS  PubMed  Google Scholar 

  73. Adriaensen L, et al. Matrix-enhanced secondary ion mass spectrometry: the influence of MALDI matrices on molecular ion yields of thin organic films. Rapid Commun Mass Spectrom. 2005;19:1017–24.

    CAS  Google Scholar 

  74. Kim YP, et al. Activity-based assay of matrix metalloproteinase on nonbiofouling surfaces using time-of-flight secondary ion mass spectrometry. Anal Chem. 2008;80(13):5094–102.

    CAS  PubMed  Google Scholar 

  75. Breitenstein D, Vonhören B, Reihs K. Semiquantitative analysis of self assembled monolayers by LEIS as well as SIMS. Submitted.

    Google Scholar 

  76. Hull JR, Tamura GS, Castner DG. Interactions of the streptococcal C5a peptidase with human fibronectin. Acta Biomater. 2008;4(3):504–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Kim Y-P, et al. Protein quantification on dendrimer-activated surfaces by using time-of-flight secondary ion mass spectrometry and principal component regression. Appl Surf Sci. 2008;255(4):1110–2.

    CAS  Google Scholar 

  78. Schnieders A, Möllers R, Benninghoven A. Molecular secondary particle emission from molecular overlayers under 10 keV Ar+ primary ion bombardment. Surf Sci. 2001;471:170–84.

    CAS  Google Scholar 

  79. Breitenstein D, et al. The chemical composition of animal cells reconstructed from 2D and 3D ToF-SIMS analysis. Appl Surf Sci. 2008;46(28):5332–5.

    Google Scholar 

  80. Ulman A. Ultrathin organic films. San Diego: Academic; 1994.

    Google Scholar 

  81. Bourdos N, et al. Analysis of lung surfactant model systems with time-of-flight secondary ion mass spectrometry. Biophys J. 2000;79(1):357–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Bourdos N, et al. Imaging of domain structures in a one-component lipid monolayer by time-of-flight secondary ion mass spectrometry. Langmuir. 2000;16:1481–4.

    CAS  Google Scholar 

  83. Biesinger MC, et al. Imaging lipid distributions in model monolayers by ToF-SIMS with selectively deuterated components and principal component analysis. Appl Surf Sci. 2006;252:6957–65.

    CAS  Google Scholar 

  84. Biesinger MC, et al. Principal component analysis of TOF-SIMS images of organic monolayers. Anal Chem. 2002;74(22):5711–6.

    CAS  PubMed  Google Scholar 

  85. Sostarecz AG, et al. Influence of molecular environment on the analysis of phospholipids by time-of-flight secondary ion mass spectrometry. Langmuir. 2004;20(12):4926–32.

    CAS  PubMed  Google Scholar 

  86. Breitenstein D, et al. Lipid specificity of surfactant protein B studied by time-of-flight secondary ion mass spectrometry. Biophys J. 2006;91(4):1347–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Harbottle RR, et al. Molecular organization revealed by time-of-flight secondary ion mass spectrometry of a clinically used extracted pulmonary surfactant. Langmuir. 2003;19:3698–704.

    CAS  Google Scholar 

  88. Sostarecz AG, et al. Phosphatidylethanolamine-induced cholesterol domains chemically identified with mass spectrometric imaging. J Am Chem Soc. 2004;126(43):13882–3.

    CAS  PubMed  Google Scholar 

  89. Hansson M, et al. Iodine content and distribution in extratumoral and tumor thyroid tissue analyzed with X-ray fluorescence and time-of-flight secondary ion mass spectrometry. Thyroid. 2008;18(11):1215–20.

    CAS  PubMed  Google Scholar 

  90. Seifert M, et al. Solubility vs. electrostatics: what determines the lipid/protein interaction in the lung surfactant. Biophys J. 2007;93(4):1192–203.

    Google Scholar 

  91. Keating E, et al. Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant. Biophys J. 2007;93(4):1391–401.

    Google Scholar 

  92. Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27(17):6197–202.

    CAS  PubMed  Google Scholar 

  93. McQuaw CM, et al. Investigating lipid interactions and the process of raft formation in cellular membranes using ToF-SIMS. Appl Surf Sci. 2006;252:6716–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Munro S. Lipid rafts: elusive or illusive? Cell. 2003;115(4):377–88.

    CAS  PubMed  Google Scholar 

  95. Wolf KV, Cole DA, Bernasek SL. High-resolution TOF-SIMS study of varying chain length self-assembled monolayer surfaces. Anal Chem. 2002;74(19):5009–16.

    CAS  PubMed  Google Scholar 

  96. Wong SCC, Lockyer NP, Vickerman JC. Mechanisms of secondary ion emission from self-assembled monolayers and multilayers. Surf Interface Anal. 2005;37:721–30.

    CAS  Google Scholar 

  97. Francis JT, et al. ToF-SIMS investigation of octadecylphosphonic acid monolayers on a mica substrate. Langmuir. 2006;22:9244–50.

    CAS  PubMed  Google Scholar 

  98. Schröder M, et al. Influence of primary ion species on the secondary cluster ion emission process from SAMs of hexadecanethiol on gold. Appl Surf Sci. 2006;252(19):6566–9.

    Google Scholar 

  99. Rading D, Kersting R, Benninghoven A. Secondary ion emission from molecular overlayers: Thiols on gold. Proc SIMS XI Conf. 1997;11:455–8.

    Google Scholar 

  100. Francis JT, et al. ToF-SIMS investigation of octadecylphosphonic acid monolayers on a mica substrate. Langmuir. 2006;22(22):9244–50.

    CAS  PubMed  Google Scholar 

  101. Prinz C, et al. Structural effects in the analysis of supported lipid bilayers by time-of-flight secondary ion mass spectrometry. Langmuir. 2007;23(15):8035–41.

    CAS  PubMed  Google Scholar 

  102. Richter K, et al. Localization of fatty acids with selective chain length by imaging time-of-flight secondary ion mass spectrometry. Microsc Res Tech. 2007;70(7):640–7.

    CAS  PubMed  Google Scholar 

  103. Möller J, et al. Introduction of a cryosectioning-ToF-SIMS instrument for analysis of non-dehydrated biological samples. Appl Surf Sci. 2006;252(19):6709–11.

    Google Scholar 

  104. Touboul D, et al. Tissue molecular ion imaging by gold cluster ion bombardment. Anal Chem. 2004;76(6):1550–9.

    CAS  PubMed  Google Scholar 

  105. Sjövall P, Lausmaa J, Johansson B. Mass spectrometric imaging of lipids in brain tissue. Anal Chem. 2004;76(15):4271–8.

    PubMed  Google Scholar 

  106. Touboul D, et al. Improvement of biological time-of-flight secondary ion mass spectrometry imaging with bismuth cluster ion source. J Am Soc Mass Spectrom. 2005;16:1608–18.

    CAS  PubMed  Google Scholar 

  107. McDonell LA, et al. Subcellular imaging mass spectrometry of brain tissue. J Mass Spectrom. 2005;1005(40):160–8.

    Google Scholar 

  108. Borner K, et al. Distribution of cholesterol and galactosylceramide in rat cerebellar white matter. Biochim Biophys Acta. 2006;1761(3):335–44.

    PubMed  Google Scholar 

  109. Nygren H, et al. Imaging TOF-SIMS of rat kidney prepared by high-pressure freezing. Microsc Res Tech. 2005;68(6):329–34.

    PubMed  Google Scholar 

  110. Nygren H, et al. Bioimaging TOF-SIMS: localization of cholesterol in rat kidney sections. FEBS Lett. 2004;566(1–3):291–3.

    CAS  PubMed  Google Scholar 

  111. Touboul D, et al. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy. J Lipid Res. 2005;46(7):1388–95.

    CAS  PubMed  Google Scholar 

  112. Malmberg P, et al. Imaging of lipids in human adipose tissue by cluster ion TOF-SIMS. Microsc Res Technol. 2007;70(9):828–35. doi:10.1002/jemt.20481.

    Google Scholar 

  113. Le Naour F, et al. Chemical imaging on liver steatosis using synchrotron infrared and ToF-SIMS microspectroscopies. PLoS One. 2009;4(10):e7408.

    PubMed Central  PubMed  Google Scholar 

  114. Monroe EB, et al. SIMS and MALDI MS imaging of the spinal cord. Proteomics. 2008;8(18):3746–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Nygren H, Malmberg P. Silver deposition on freeze-dried cells allows subcellular localization of cholesterol with imaging TOF-SIMS. J Microsc. 2004;215(Pt 2):156–61.

    CAS  PubMed  Google Scholar 

  116. Altelaar AF, et al. Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem. 2006;78(3):734–42.

    CAS  PubMed  Google Scholar 

  117. Berman ES, et al. Preparation of single cells for imaging/profiling mass spectrometry. J Am Soc Mass Spectrom. 2008;19(8):1230–6.

    CAS  PubMed  Google Scholar 

  118. Fartmann M, et al. Characterization of cell cultures with ToF-SIMS and laser-SNMS. Surf Interface Anal. 2002;34:63–6.

    CAS  Google Scholar 

  119. Wittig A, et al. Preparation of cells cultured on silicon wafers for mass spectrometry analysis. Microsc Res Tech. 2005;66(5):248–58.

    CAS  PubMed  Google Scholar 

  120. Ostrowski SG, et al. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science. 2004;305(5680):71–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Piehowski PD, et al. Freeze-etching and vapor matrix deposition for ToF-SIMS imaging of single cells. Langmuir. 2008;24(15):7906–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Vaidyanathan S, et al. Subsurface biomolecular imaging of Streptomyces coelicolor using secondary ion mass spectrometry. Anal Chem. 2008;80(6):1942–51.

    CAS  PubMed  Google Scholar 

  123. Parry S, Winograd N. High-resolution TOF-SIMS imaging of eukaryotic cells preserved in a trehalose matrix. Anal Chem. 2005;77(24):7950–7.

    CAS  PubMed  Google Scholar 

  124. Monroe EB, et al. Vitamin E imaging and localization in the neuronal membrane. J Am Chem Soc. 2005;127(35):12152–3.

    CAS  PubMed  Google Scholar 

  125. Sjovall P, et al. Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal Chem. 2003;75(14):3429–34.

    PubMed  Google Scholar 

  126. Hoetelmans RW, et al. Effects of acetone, methanol, or paraformaldehyde on cellular structure, visualized by reflection contrast microscopy and transmission and scanning electron microscopy. Appl Immunohistochem Mol Morphol. 2001;9(4):346–51.

    CAS  PubMed  Google Scholar 

  127. Levi-Setti R, Gavrilow KL, Neilly ME. Cations in mammalian cells and chromosomes: sample preparation protocols affect elemental abundances by SIMS. Appl Surf Sci. 2005;252:6765–9.

    Google Scholar 

  128. Fardim P, et al. Extractives on fiber surfaces investigated by XPS, ToF-SIMS and AFM. Colloid Surface A. 2005;255:91–103.

    CAS  Google Scholar 

  129. Fardim P, Holmbom B. ToF-SIMS imaging: a valuable chemical microscopy technique for paper and paper coatings. Appl Surf Sci. 2005;249:393–407.

    CAS  Google Scholar 

  130. Mazel V, et al. Chemical imaging techniques for the analysis of complex mixtures: new application to the characterization of ritual matters on African wooden statuettes. Anal Chim Acta. 2006;570(1):34–40.

    CAS  Google Scholar 

  131. Aoyagi S, Kudo M. Effective monitoring of protein reaction on glass plate surfaces by TOF-SIMS. Biosens Bioelectron. 2005;20(8):1626–30.

    CAS  PubMed  Google Scholar 

  132. Hellweg S, et al. Mass spectrometric characterization of DNA microarrays as a function of primary ion species. Appl Surf Sci. 2006;252:6742–5.

    CAS  Google Scholar 

  133. Belu AM, et al. Enhanced TOF-SIMS imaging of a micropatterned protein by stable isotope protein labeling. Anal Chem. 2001;73(2):143–50.

    CAS  PubMed  Google Scholar 

  134. Aoyagi S, et al. TOF-SIMS imaging of protein adsorption on dialysis membrane by means of information entropy. Surf Sci Nanotechnol. 2003;1:67–71.

    CAS  Google Scholar 

  135. Canavan HE, et al. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir. 2005;21(5):1949–55.

    CAS  PubMed  Google Scholar 

  136. Rading D, et al. Dual beam depth profiling of organic materials: variations of analysis and sputter beam conditions. Surf Interface Anal. 2010. doi:10.1002/sia.3422.

    Google Scholar 

  137. Shard AG, et al. Measurement of sputtering yields and damage in C60 SIMS depth profiling of model organic materials. Surf Interface Anal. 2007;39:294–8.

    CAS  Google Scholar 

  138. Sostarecz AG, et al. Depth profiling of Langmuir–Blodgett films with a buckminsterfullerene probe. Anal Chem. 2004;76(22):6651–8.

    CAS  PubMed  Google Scholar 

  139. Cheng J, Winograd N. Depth profiling of peptide films with TOF-SIMS and a C60 probe. Anal Chem. 2005;77:3651–9.

    CAS  PubMed  Google Scholar 

  140. Fletcher JS, et al. TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal Chem. 2007;79:2199–206.

    CAS  PubMed  Google Scholar 

  141. Nygren H, et al. Bioimaging TOF-SIMS: high resolution 3D imaging of single cells. Microsc Res Tech. 2007;70(11):969–74.

    CAS  PubMed  Google Scholar 

  142. Wucher A, Cheng J, Winograd N. Protocols for three-dimensional molecular imaging using mass spectrometry. Anal Chem. 2007;79(15):5529–39. doi:10.1021/ac070692a.

    Google Scholar 

  143. Delcorte A. On the road to high-resolution 3D molecular imaging. Appl Surf Sci. 2008;255(4):954–8.

    CAS  Google Scholar 

  144. Arlinghaus HF. Laser-SNMS. In: Bubert H, Jenett H, editors. Surface and thin film analysis. Principles, instrumentation, applications. Weinheim: Wiley-VCH; 2002. p. 132–9.

    Google Scholar 

  145. Wucher A. Laser post-ionisation: fundamentals. In: Vickerman JC, editor. ToF-SIMS—surface analysis by mass spectrometry. Manchester/Chichester: IM Publications; 2001. p. 347–74.

    Google Scholar 

  146. Arlinghaus HF, et al. Subcellular imaging of cell cultures and tissue for boron localization with laser-SNMS. Surf Interface Anal. 2004;36:698–701.

    CAS  Google Scholar 

  147. Altelaar AF, et al. Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. Anal Chem. 2005;77(3):735–41.

    CAS  PubMed  Google Scholar 

  148. Nygren H, Johansson BR, Malmberg P. Bioimaging TOF-SIMS of tissues by gold ion bombardment of a silver-coated thin section. Microsc Res Tech. 2004;65(6):282–6.

    CAS  PubMed  Google Scholar 

  149. Delcorte A, Medard N, Bertrand P. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition. Anal Chem. 2002;74(19):4955–68.

    CAS  PubMed  Google Scholar 

  150. Delcorte A, et al. Sample metallization for performance improvement in desorption/ionization of kilodalton molecules: quantitative evaluation, imaging secondary ion MS, and laser ablation. Anal Chem. 2003;75(24):6875–85.

    CAS  PubMed  Google Scholar 

  151. Kim YP, et al. Gold nanoparticle-enhanced secondary ion mass spectrometry imaging of peptides on self-assembled monolayers. Anal Chem. 2006;78(6):1913–20.

    CAS  PubMed  Google Scholar 

  152. Delcorte A. Matrix-enhanced secondary ion mass spectrometry: the alchemist’s solution? Appl Surf Sci. 2006;252(19):6582–7.

    CAS  Google Scholar 

  153. Graham DJ, Wagner MS, Castner DG. Information from complexity: challenges of TOF-SIMS data interpretation. Appl Surf Sci. 2006;252(19):6860–8.

    CAS  Google Scholar 

  154. Tyler BJ. Multivariate statistical image processing for molecular specific imaging in organic and bio-systems. Appl Surf Sci. 2006;252(19):6875–82.

    CAS  Google Scholar 

  155. Tyler BJ, Rayal G, Castner DG. Multivariate analysis strategies for processing ToF-SIMS images of biomaterials. Biomaterials. 2007;28(15):2412–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Milillo TM, Gardella JA. Spatial statistics and interpolation methods for TOF SIMS imaging. Appl Surf Sci. 2006;252(19):6883–90.

    CAS  Google Scholar 

  157. Smentkowski VS, et al. Multivariate statistical analysis of concatenated time-of-flight secondary ion mass spectrometry spectral images. Complete description of the sample with one analysis. Anal Chem. 2005;77(5):1530–6.

    CAS  PubMed  Google Scholar 

  158. Kulp KS, et al. Chemical and biological differentiation of three human breast cancer cell types using time-of-flight secondary ion mass spectrometry. Anal Chem. 2006;78(11):3651–8.

    CAS  PubMed  Google Scholar 

  159. Thompson CE, et al. ToF-SIMS studies of Bacillus using multivariate analysis with possible identification and taxonomic applications. Appl Surf Sci. 2006;252(19):6719–22.

    CAS  Google Scholar 

  160. Tidwell CD, et al. Static time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy characterization of adsorbed albumin and fibronectin films. Surf Interface Anal. 2001;31:724–33.

    CAS  Google Scholar 

  161. Quong JN, et al. Molecule-specific imaging analysis of carcinogens in breast cancer cells using time-of-flight secondary ion mass spectrometry. Appl Surf Sci. 2004;231–232:424–7.

    Google Scholar 

  162. Wagner MS, et al. Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): detection of low amounts of adsorbed protein. J Biomater Sci Polym Ed. 2002;13(4):407–28.

    CAS  PubMed  Google Scholar 

  163. Wagner MS. Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry. Anal Chem. 2005;77:911–22.

    CAS  PubMed  Google Scholar 

  164. Yamada I, et al. Materials processing by gas cluster ion beams. Mat Sci Eng: R-Reports Rev J. 2001;34(6):231–95.

    Google Scholar 

  165. Ninomiya S, et al. Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams. Rapid Commun Mass Spectrom. 2009;23:1601–6.

    CAS  PubMed  Google Scholar 

  166. Carado A, et al. C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Anal Chem. 2008;80(21):7921–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Popov J, et al. Chemical mapping of ceramide distribution in sphingomyelin-rich domains in monolayers. Langmuir. 2008;24(23):13502–8.

    CAS  PubMed  Google Scholar 

  168. Heeren RMA, et al. Why don’t biologists use SIMS? A critical evaluation of imaging MS. Appl Surf Sci. 2007;252(19):6827–35.

    Google Scholar 

  169. Breitenstein D, et al. The chemical composition of animal cells and their intracellular compartments reconstructed from 3D mass spectrometry. Angew Chem Int Edit. 2007. Published online.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Breitenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Breitenstein, D., Hagenhoff, B., Schnieders, A. (2014). Biomolecular Analysis by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). In: Smentkowski, V. (eds) Surface Analysis and Techniques in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-01360-2_3

Download citation

Publish with us

Policies and ethics