Skip to main content

Applications of XPS in Biology and Biointerface Analysis

  • Chapter
  • First Online:
Surface Analysis and Techniques in Biology

Abstract

XPS has been used extensively to characterize the surface chemistry of materials used in bioengineering and is increasingly finding a role in biology. Its ability to characterize both the elemental and chemical structures of the surface makes it particularly useful, as it can be used to identify and image the chemical functional groups present on the surface of virtually any material. This review is intended both to profile traditional applications of XPS in bioengineering and biology as well as to discuss advances in XPS instrumentation aimed at enabling the characterization of biological and organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner MS, McArthur SL, Shen MC, Horbett TA, Castner DG. Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): detection of low amounts of adsorbed protein. J Biomater Sci-Polym Ed. 2002;13:407–28.

    CAS  PubMed  Google Scholar 

  2. Lee CY, Harbers GM, Grainger DW, Gamble LJ, Castner DG. Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of DNA microarrays. J Am Chem Soc. 2007;129:9429–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. McArthur SL, McLean KM, St John HAW, Griesser HJ. XPS and surface-MALDI-MS characterisation of worn HEMA-based contact lenses. Biomaterials. 2001;22:3295–304.

    CAS  PubMed  Google Scholar 

  4. Foley JO, Fu E, Gamble LJ, Yager P. Microcontact printed antibodies on gold surfaces: function, uniformity, and silicone contamination. Langmuir. 2008;24:3628–35.

    CAS  PubMed  Google Scholar 

  5. St John HAW, Gengenbach TR, Hartley PG, Griesser HJ. Surface analysis of polymers. In: O’Connor D, Sexton B, Smart RC, editors. Surface analysis methods in material science. Heidelberg: Springer-Verlag Berlin; 2000.

    Google Scholar 

  6. Beamson G, Alexander MR. Angle-resolved XPS of fluorinated and semi-fluorinated side-chain polymers. Surf Interface Anal. 2004;36:323–33.

    CAS  Google Scholar 

  7. Alexander MR, Whittle JD, Barton D, Short RD. Plasma polymer chemical gradients for evaluation of surface reactivity: epoxide reaction with carboxylic acid surface groups. J Mater Chem. 2004;14:408–12.

    CAS  Google Scholar 

  8. Ratner BD, Castner DG. Advances in X-ray photoelectron spectroscopy instrumentation and methodology: instrument evaluation and new techniques with special reference to biomedical studies. Colloid Surf B. 1994;2:333–46.

    CAS  Google Scholar 

  9. Whittle JD, Barton D, Alexander MR, Short RD. A method for the deposition of controllable chemical gradients. Chem Commun. 2003;14:1766–7.

    Google Scholar 

  10. Paynter RW, Ratner BD. The study of interfacial proteins and biomolecules by X-ray photoelectron spectroscopy. In: Andrade JD, editor. Surface and interfacial aspects of biomedical polymers. New York: Plenum Press; 1985. p. 189–216.

    Google Scholar 

  11. Chen Y-Y, Yu B-Y, Wang W-B, Hsu M-F, Lin W-C, Lin Y-C, et al. X-ray photoelectron spectrometry depth profiling of organic thin films using C60 sputtering. Anal Chem. 2007; 80:501–5.

    PubMed  Google Scholar 

  12. Rafati A, Davies MC, Shard AG, Hutton S, Mishra G, Alexander MR. Quantitative XPS depth profiling of codeine loaded poly(l-lactic acid) films using a coronene ion sputter source. J Control Release. 2009;138:40–4.

    CAS  PubMed  Google Scholar 

  13. Yu BY, Chen YY, Wang WB, Hsu MF, Tsai SP, Lin WC, et al. Depth profiling of organic films with X-ray photoelectron spectroscopy using C-60(+) and Ar+ co-sputtering. Anal Chem. 2008;80:3412–5.

    CAS  PubMed  Google Scholar 

  14. Pembrey RS, Marshall KC, Schneider RP. Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Appl Environ Microbiol. 1999; 65:2877–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Vogler EA. On the biomedical relevance of surface spectroscopy. J Electron Spectrosc Relat Phenom. 1996;81:237–47.

    CAS  Google Scholar 

  16. Lewis KB, Ratner BD. Observation of surface restructuring of polymers using ESCA. J Colloid Interface Sci. 1993;159:77–85.

    CAS  Google Scholar 

  17. Lukas J, Sodhi RNS, Sefton MV. An XPS study of the surface reorientation of statistical methacrylate copolymers. J Colloid Interface Sci. 1995;174:421–7.

    CAS  Google Scholar 

  18. Magnani A, Barbucci R, Lewis KB, Leachscampavia D, Ratner BD. Surface-properties and restructuring of a cross-linked polyurethane-poly(amido-amine) network. J Mater Chem. 1995;5:1321–30.

    CAS  Google Scholar 

  19. Paynter RW, Ratner BD, Horbett TA, Thomas HR. XPS studies on the organisation of adsorbed protein films on fluoropolymers. J Colloid Interface Sci. 1984;101:233–45.

    CAS  Google Scholar 

  20. Ratner BD, Thomas TA, Shuttleworth D, Horbett TA. Analysis of the organisation of protein films on solid surfaces by ESCA. J Colloid Interface Sci. 1981;83:630–42.

    CAS  Google Scholar 

  21. Dufrene YF, VanderWal A, Norde W, Rouxhet PG. X-ray photoelectron spectroscopy analysis of whole cells and isolated cell walls of gram-positive bacteria: comparison with biochemical analysis. J Bacteriol. 1997;179:1023–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Vohrer U, Blomfield C, Page S, Roberts A. Quantitative XPS imaging – new possibilities with the delay-line detector. Appl Surf Sci. 2005;252:61–5.

    CAS  Google Scholar 

  23. Wang XJ, Haasch RT, Bohn PW. Anisotropic hydrogel thickness gradient films derivatized to yield three-dimensional composite materials. Langmuir. 2005;21:8452–9.

    CAS  PubMed  Google Scholar 

  24. Tougaard S. Algorithm for automatic X-ray photoelectron spectroscopy data processing and X-ray photoelectron spectroscopy imaging. J Vac Sci Technol A. 2005;23:741–5.

    CAS  Google Scholar 

  25. Walton J, Fairley N. Quantitative surface chemical-state microscopy by X-ray photoelectron spectroscopy. Surf Interface Anal. 2004;36:89–91.

    CAS  Google Scholar 

  26. Walton J, Fairley N. Transmission-function correction for XPS spectrum imaging. Surf Interface Anal. 2006;38:388–91.

    CAS  Google Scholar 

  27. Steinmiller EMP, Choi K-S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc Natl Acad Sci U S A. 2009;106:20633–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Grünert W, Stakheev AY, Mörke W, Feldhaus R, Anders K, Shpiro ES, et al. Reduction and metathesis activity of MoO3/Al2O3 catalysts: I. An XPS investigation of MoO3/AI2O3 catalysts. J Catal. 1992;135:269–86.

    Google Scholar 

  29. Finster J, Klinkenberg ED, Heeg J, Braun W. ESCA and SEXAFS investigations of insulating materials for ULSI microelectronics. Vacuum. 1990;41:1586–9.

    CAS  Google Scholar 

  30. Casper L. Microelectronics processing: inorganic materials characterization. Washington DC: American Chemical Society; 1986.

    Google Scholar 

  31. Stingeder G. The challenge of microelectronics for analytical chemistry. Fresenius J Anal Chem. 1992;343:771–2.

    CAS  Google Scholar 

  32. Heung WF, Yang YP, Wong PC, Mitchell KAR, Foster T. XPS and corrosion studies on zinc phosphate coated 7075-T6 aluminium alloy. J Mater Sci. 1994;29:1368–73.

    CAS  Google Scholar 

  33. Windisch C, Baer D, Engelhard M, Jones R. Analyzing localized corrosion in lon-implanted metals via XPS/AES. JOM J Miner Met Mater Soc. 2001;53:37–41.

    CAS  Google Scholar 

  34. Chang MC, Tanaka J. XPS study for the microstructure development of hydroxyapatite-collagen nanocomposites cross-linked using glutaraldehyde. Biomaterials. 2002;23:3879–85.

    CAS  PubMed  Google Scholar 

  35. Pan J, Thierry D, Leygraf C. Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide. J Biomed Mater Res. 1994;28:113–22.

    CAS  PubMed  Google Scholar 

  36. Ratner B. Surface characterization of biomaterials by electron spectroscopy for chemical analysis. Ann Biomed Eng. 1983;11:313–36.

    CAS  PubMed  Google Scholar 

  37. Walker AR. Charged particle energy analyser. US Patent: 4810879. 1989.

    Google Scholar 

  38. Paul EL, Michael AK. Surface charge neutralization of insulating samples in X-ray photoemission spectroscopy. J Vac Sci Technol A. 1998;16:3483–9.

    Google Scholar 

  39. Tougaard S. Universality classes of inelastic electron scattering cross-sections. Surf Interface Anal. 1997;25:137–54.

    CAS  Google Scholar 

  40. Hajati S, Tougaard S. XPS for non-destructive depth profiling and 3D imaging of surface nanostructures. Anal Bioanal Chem. 2010;396:2741–55.

    CAS  PubMed  Google Scholar 

  41. Horbett TA, Brash JL. Proteins at interfaces II: fundamentals and applications. Washington D. C.: American Chemical Society; 1995.

    Google Scholar 

  42. Castner DG, Ratner BD. Biomedical surface science: foundations to frontiers. Surf Sci. 2002;500:28–60.

    CAS  Google Scholar 

  43. McArthur SL, McLean KM, Kingshott P, St John HAW, Chatelier RC, Griesser HJ. Effect of polysaccharide structure on protein adsorption. Colloid Surf B-Biointerfaces. 2000; 17:37–48.

    CAS  Google Scholar 

  44. Salim M, O’Sullivan B, McArthur SL, Wright PC. Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA. Lab Chip. 2007;7:64–70.

    CAS  PubMed  Google Scholar 

  45. Johnson G, Jenkins ML, McLean KM, Griesser HJ, Kwak J, Goodman M, et al. Peptoid-containing collagenmimetics with cell binding activity. J Biomed Mater Res. 2000;51:612–24.

    CAS  PubMed  Google Scholar 

  46. Massia SP, Stark J. Immobilized RGD peptides on surface-grafted dextran promote biospecific cell attachment. J Biomed Mater Res. 2001;56:390–9.

    CAS  PubMed  Google Scholar 

  47. Chow E, Wong ELS, Bocking T, Nguyen QT, Hibbert DB, Gooding JJ. Analytical performance and characterization of MPA-Gly-Gly-His modified sensors. Sens Actuator B-Chem. 2005;111:540–8.

    Google Scholar 

  48. Weidner T, Samuel NT, McCrea K, Gamble LJ, Ward RS, Castner DG. Assembly and structure of alpha-helical peptide films on hydrophobic fluorocarbon surfaces. Biointerphases. 2010;5:9–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Apte JS, Collier G, Latour RA, Gamble LJ, Castner DG. XPS and ToF-SIMS investigation of alpha-helical and beta-strand peptide adsorption onto SAMs. Langmuir. 2010;26:3423–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Feyer V, Plekan O, Tsud N, Chab V, Matolin V, Prince KC. Adsorption of histidine and histidine-containing peptides on Au(111). Langmuir. 2010;26:8606–13.

    CAS  PubMed  Google Scholar 

  51. Iucci G, Battocchio C, Dettin M, Gambaretto R, Polzonetti G. A NEXAFS and XPS study of the adsorption of self-assembling peptides on TiO2: the influence of the side chains. Surf Interface Anal. 2008;40:210–4.

    CAS  Google Scholar 

  52. Jedlicka SS, Rickus JL, Zemyanov DY. Surface analysis by X-ray photoelectron spectroscopy of sol–gel silica modified with covalently bound peptides. J Phys Chem B. 2007;111:11850–7.

    CAS  PubMed  Google Scholar 

  53. Charnley M, Fairfull-Smith K, Haldar S, Elliott R, McArthur SL, Williams NH, et al. Generation of bioactive materials with rapid self-assembling resorcinarene-peptides. Adv Mater. 2009;21:2909–15.

    CAS  Google Scholar 

  54. Shen MC, Martinson L, Wagner MS, Castner DG, Ratner BD, Horbett TA. PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. J Biomater Sci-Polym Ed. 2002;13:367–90.

    CAS  PubMed  Google Scholar 

  55. Thissen H, Gengenbach T, du Toit R, Sweeney DF, Kingshott P, Griesser HJ, et al. Clinical observations of biofouling on PEO coated silicone hydrogel contact lenses. Biomaterials. 2010;31:5510–9.

    CAS  PubMed  Google Scholar 

  56. Zinelis S, Thomas A, Syres K, Silikas N, Eliades G. Surface characterization of zirconia dental implants. Dent Mater. 2009;26:295–305.

    PubMed  Google Scholar 

  57. Leitao E, Barbosa MA, deGroot K. XPS characterization of surface films formed on surface-modified implant materials after cell culture. J Mater Sci-Mater Med. 1997;8:423–6.

    CAS  PubMed  Google Scholar 

  58. Liu YT, Li K, Pan J, Liu B, Feng SS. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 2010;31:330–8.

    CAS  PubMed  Google Scholar 

  59. Daniel C, Sohn KE, Mates TE, Kramer EJ, Radler JO, Sackmann E, et al. Structural characterization of an elevated lipid bilayer obtained by stepwise functionalization of a self-assembled alkenyl silane film. Biointerphases. 2007;2:109–18.

    CAS  PubMed  Google Scholar 

  60. Kim HK, Kim K, Byun Y. Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate. Biomaterials. 2005;26:3435–44.

    CAS  PubMed  Google Scholar 

  61. Michel R, Subramaniam V, McArthur SL, Bondurant B, D’Ambruoso GD, Hall HK, et al. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers. Langmuir. 2008;24:4901–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. McArthur SL, Halter MW, Vogel V, Castner DG. Covalent coupling and characterization of supported lipid layers. Langmuir. 2003;19:8316–24.

    CAS  Google Scholar 

  63. Russell BG, Moddeman WE, Birkbeck JC, Wright SE, Millington DS, Stevens RD, et al. Surface structure of human mucin using X-ray photoelectron spectroscopy. Biospectroscopy. 1998;4:257–66.

    CAS  PubMed  Google Scholar 

  64. Lundin M, Sandberg T, Caldwell KD, Blomberg E. Comparison of the adsorption kinetics and surface arrangement of “as received” and purified bovine submaxillary gland mucin (BSM) on hydrophilic surfaces. J Colloid Interface Sci. 2009;336:30–9.

    CAS  PubMed  Google Scholar 

  65. Libertino S, Giannazzo F, Aiello V, Scandurra A, Sinatra F, Renis M, et al. XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO2 surfaces. Langmuir. 2008;24:1965–72.

    CAS  PubMed  Google Scholar 

  66. Abbas A, Vercaigne-Marko D, Supiot P, Bocquet B, Vivien C, Guillochon D. Covalent attachment of trypsin on plasma polymerized allylamine. Colloid Surf B-Biointerfaces. 2009;73:315–24.

    CAS  Google Scholar 

  67. Debenedetto GE, Malitesta C, Zambonin CG. Electroanalytical X-ray photoelectron-spectroscopy investigation on glucose-oxidase adsorbed on platinum. J Chem Soc-Faraday Trans. 1994;90:1495–9.

    CAS  Google Scholar 

  68. Liu ZC, Zhang X, He NY, Lu ZH, Chen ZC. Probing DNA hybridization efficiency and single base mismatch by X-ray photoelectron spectroscopy. Colloid Surf B-Biointerfaces. 2009;71:238–42.

    CAS  Google Scholar 

  69. Zhang XC, Kumar S, Chen JH, Teplyakov AV. Covalent attachment of shape-restricted DNA molecules on amine-functionalized Si(111) surface. Surf Sci. 2009;603:2445–57.

    CAS  Google Scholar 

  70. May CJ, Canavan HE, Castner DG. Quantitative X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterization of the components in DNA. Anal Chem. 2004;76:1114–22.

    CAS  PubMed  Google Scholar 

  71. Petrovykh DY, Kimura-Suda H, Tarlov MJ, Whitman LJ. Quantitative characterization of DNA films by X-ray photoelectron spectroscopy. Langmuir. 2004;20:429–40.

    CAS  PubMed  Google Scholar 

  72. Graf N, Gross T, Wirth T, Weigel W, Unger WES. Application of XPS and ToF-SIMS for surface chemical analysis of DNA microarrays and their substrates. Anal Bioanal Chem. 2009;393:1907–12.

    CAS  PubMed  Google Scholar 

  73. Dhayal M, Ratner DA. XPS and SPR analysis of glycoarray surface density. Langmuir. 2009; 25:2181–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Tyler BJ. XPS and SIMS studies of surfaces important in biofilm formation – three case studies. In: Prokop A, Hunkeler D, Cherrington AD, editors. Bioartificial organs – science, medicine, and technology. New York: New York Acad Sciences; 1997. p. 114–26.

    Google Scholar 

  75. Bejjani BA, Shaffer LG. Application of array-based comparative genomic hybridization to clinical diagnostics. J Mol Diagn. 2006;8:528–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Lamartine J. The benefits of DNA microarrays in fundamental and applied bio-medicine. Mater Sci Eng C-Biomim Supramol Syst. 2006;26:354–9.

    CAS  Google Scholar 

  77. Wu P, Castner DG, Grainger DW. Diagnostic devices as biomaterials: a review of nucleic acid and protein microarray surface performance issues. J Biomater Sci-Polym Ed. 2008;19:725–53.

    CAS  PubMed  Google Scholar 

  78. Gong P, Harbers GM, Grainger DW. Multi-technique comparison of immobilized and hybridized oligonucleotide surface density on commercial amine-reactive microarray slides. Anal Chem. 2006;78:2342–51.

    CAS  PubMed  Google Scholar 

  79. Leone L, Loring J, Sjooberg S, Persson P, Shchukarev A. Surface characterization of the Gram-positive bacteria Bacillus subtilis – an XPS study. Surf Interface Anal. 2006;38:202–5.

    CAS  Google Scholar 

  80. Rouxhet PG, Mozes N, Dengis PB, Dufrene YF, Gerin PA, Genet MJ. Application of X-ray photoelectron-spectroscopy to microorganisms. Colloid Surf B-Biointerfaces. 1994;2:347–69.

    CAS  Google Scholar 

  81. Tesson B, Genet MJ, Fernandez V, Degand S, Rouxhet PG, Martin-Jezequel V. Surface chemical composition of diatoms. ChemBioChem. 2009;10:2011–24.

    CAS  PubMed  Google Scholar 

  82. Dague E, Delcorte A, Latge JP, Dufrene YF. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis. Langmuir. 2008;24:2955–9.

    CAS  PubMed  Google Scholar 

  83. Ojeda JJ, Romero-Gonzalez ME, Bachmann RT, Edyvean RGJ, Banwart SA. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir. 2008;24:4032–40.

    CAS  PubMed  Google Scholar 

  84. Boonaert CJP, Rouxhet PG. Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. Appl Environ Microbiol. 2000;66:2548–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. van der Mei HC, de Vries J, Busscher HJ. X-ray photoelectron spectroscopy for the study of microbial cell surfaces. Surf Sci Rep. 2000;39:3–24.

    Google Scholar 

  86. Sharma PK, Rao KH. Surface characterization of bacterial cells relevant to the mineral industry. Miner Metall Process. 2005;22:31–7.

    CAS  Google Scholar 

  87. Beech IB, Zinkevich V, Tapper R, Gubner R, Avci R. Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry. J Microbiol Methods. 1999;36:3–10.

    CAS  PubMed  Google Scholar 

  88. Yuan SJ, Pehkonen SO. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Colloid Surf B-Biointerfaces. 2007;59:87–99.

    CAS  Google Scholar 

  89. Sahrani FK, Aziz MA, Ibrahim Z, Yahya A. Surface analysis of marine sulphate-reducing bacteria exopolymers on steel during biocorrosion using X-ray photoelectron spectroscopy. Sains Malays. 2008;37:131–5.

    CAS  Google Scholar 

  90. Omoike A, Chorover J. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects. Biomacromolecules. 2004;5:1219–30.

    CAS  PubMed  Google Scholar 

  91. Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R. Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloid Surf B-Biointerfaces. 2006;53:105–12.

    CAS  Google Scholar 

  92. Fantauzzi M, Rossi G, Elsener B, Loi G, Atzei D, Rossi A. An XPS analytical approach for elucidating the microbially mediated enargite oxidative dissolution. Anal Bioanal Chem. 2009;393:1931–41.

    CAS  PubMed  Google Scholar 

  93. Magnuson TS, Neal AL, Geesey GG. Combining in situ reverse transcriptase polymerase chain reaction, optical microscopy, and X-ray photoelectron spectroscopy to investigate mineral surface-associated microbial activities. Microb Ecol. 2004;48:578–88.

    CAS  PubMed  Google Scholar 

  94. Kalinowski BE, Liermann LJ, Brantley SL, Barnes A, Pantano CG. X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim Cosmochim Acta. 2000;64:1331–43.

    CAS  Google Scholar 

  95. Ahimou F, Boonaert CJP, Adriaensen Y, Jacques P, Thonart P, Paquot M, et al. XPS analysis of chemical functions at the surface of Bacillus subtilis. J Colloid Interface Sci. 2007;309:49–55.

    CAS  PubMed  Google Scholar 

  96. Marshall KC, Pembrey R, Schneider RP. The relevance of X-ray photoelectron-spectroscopy for analysis of microbial cell-surfaces – a critical-view. Colloid Surf B-Biointerfaces. 1994;2:371–6.

    Google Scholar 

  97. Leone L, Ferri D, Manfredi C, Persson P, Shchukarev A, Sjoberg S, et al. Modeling the acid–base properties of bacterial surfaces: a combined spectroscopic and potentiometric study of the gram-positive bacterium Bacillus subtilis. Environ Sci Technol. 2007;41:6465–71.

    CAS  PubMed  Google Scholar 

  98. Mine A, Yoshida Y, Suzuki K, Nakayama Y, Yatani H, Kuboki T. Spectroscopic characterization of enamel surfaces irradiated with Er: YAG laser. Dent Mater J. 2006;25:214–8.

    CAS  PubMed  Google Scholar 

  99. Ziglo MJ, Nelson AE, Heo G, Major PW. Argon laser induced changes to the carbonate content of enamel. Appl Surf Sci. 2009;255:6790–4.

    CAS  Google Scholar 

  100. Busscher HJ, Vandermei HC, Genet MJ, Perdok JF, Rouxhet PG. XPS determination of the thickness of adsorbed mouthrinse components on dental enamel. Surf Interface Anal. 1990;15:344–6.

    CAS  Google Scholar 

  101. Taube F, Ylmen R, Shchukarev A, Nietzsche S, Noren JG. Morphological and chemical characterization of tooth enamel exposed to alkaline agents. J Dent. 2010;38:72–81.

    CAS  PubMed  Google Scholar 

  102. Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, et al. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J Dent Res. 2000;79:709–14.

    CAS  PubMed  Google Scholar 

  103. Lou L, Nelson AE, Heo G, Major PW. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS). Appl Surf Sci. 2008;254:6706–9.

    CAS  Google Scholar 

  104. Andrade JD. X-ray photoelectron spectroscopy. In: Andrade JD, editor. Surface and interfacial aspects of biomedical polymers. New York: Plenum Press; 1985.

    Google Scholar 

  105. Burgos-Asperilla L, Garcia-Alonso MC, Escudero ML, Alonso C. Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface. Acta Biomater. 2010;6:652–61.

    CAS  PubMed  Google Scholar 

  106. Zelzer M, Alexander MR. Nanopores in single- and double-layer plasma polymers used for cell guidance in water and protein containing buffer solutions. J Phys Chem B. 2010;114:569–76.

    CAS  PubMed  Google Scholar 

  107. Chung DJ. Surface modification of polymers for biomaterials. J Dent Res. 2001;80:1348.

    Google Scholar 

  108. Hartley PG, McArthur SL, McLean KM, Griesser HJ. Physicochemical properties of polysaccharide coatings based on grafted multilayer assemblies. Langmuir. 2002;18:2483–94.

    CAS  Google Scholar 

  109. Griesser HJ, Hartley PG, McArthur SL, McLean KM, Meagher L, Thissen H. Interfacial properties and protein resistance of nano-scale polysaccharide coatings. Smart Mater Struct. 2002;11:652–61.

    CAS  Google Scholar 

  110. Canavan HE, Cheng XH, Graham DJ, Ratner BD, Castner DG. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir. 2005;21:1949–55.

    CAS  PubMed  Google Scholar 

  111. Artyushkova K, Fulghum JE. Multivariate image analysis methods applied to XPS imaging data sets. Surf Interface Anal. 2002;33:185–95.

    CAS  Google Scholar 

  112. Walton J, Fairley N. XPS spectromicroscopy: exploiting the relationship between images and spectra. Surf Interface Anal. 2008;40:478–81.

    CAS  Google Scholar 

  113. Artyushkova K. Structure determination of nanocomposites through 3D imaging using laboratory XPS and multivariate analysis. J Electron Spectrosc Relat Phenom. 2010;178:292–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally L. McArthur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McArthur, S.L., Mishra, G., Easton, C.D. (2014). Applications of XPS in Biology and Biointerface Analysis. In: Smentkowski, V. (eds) Surface Analysis and Techniques in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-01360-2_2

Download citation

Publish with us

Policies and ethics