Skip to main content

Multi-technique Characterization of DNA-Modified Surfaces for Biosensing and Diagnostic Applications

  • Chapter
  • First Online:
Surface Analysis and Techniques in Biology

Abstract

Complementary surface analysis techniques—X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and surface plasmon resonance (SPR)—were combined to characterize the structure and composition of DNA-modified surfaces. Both model systems [thiolated single-stranded DNA (ssDNA) on gold surfaces] and commercial systems (ssDNA spotted onto microarray slides) were investigated. Pure thiolated 20-mer ssDNA assembles onto gold, with the ssDNA binding spontaneously to the surface via the thiol groups and nitrogen atoms in the DNA bases, resulting in a monolayer with limited ssDNA chain order. XPS, NEXAFS, SPR, and radiotracer studies showed that when the pure ssDNA monolayers were exposed to short-chain functionalized alkyl thiol diluents [either 11-mercapto-1-undecanol (MCU) or oligo(ethylene glycol) (OEG)], the diluents initially displaced the weaker gold–nitrogen DNA interactions, reorienting the ssDNA chains to a more upright configuration. After longer exposures to diluent thiols, some ssDNA chains were displaced from the gold surface. The efficiency of the target hybridization to complementary DNA from solution depended on the structure and composition of the immobilized probe ssDNA surface. As the upright orientation of the ssDNA chains increased, the amount of hybridization increased. As ssDNA chains were displaced from the surface, the amount of hybridization decreased. Incorporating the diluent thiol eliminated the small amount of nonspecific binding from noncomplementary target DNA observed on the pure ssDNA monolayers. The DNA hybridization kinetics were significantly more rapid on the mixed ssDNA/MCU and ssDNA/OEG surfaces compared to the pure ssDNA surface. The OEG diluent was more effective than the MCU diluent at reducing nonspecific protein adsorption during DNA hybridization from blood serum. Nanoliter drops of amine-terminated ssDNA were robotically spotted onto a glass microscope slide with an amine-reactive microarray polymer coating; the resulting 150-μm spots were imaged with XPS and ToF-SIMS. Imaging XPS provided single-spot phosphorous, nitrogen, sodium, and silicon elemental images. Small-spot XPS data were then used to quantify DNA hybridization efficiencies in each microspot as a function of the ssDNA concentration in the probe printing solution. The DNA microspots were also readily visualized in the negative ToF-SIMS images of key fragments from the DNA backbone (e.g., PO x ), DNA bases (A–H, T–H, G–H, C–H, etc.), and the substrate (e.g., Si). Principal component analysis (PCA) of the ToF-SIMS images was used to distinguish heterogeneities within the DNA microspots due to the variations in printing process and solution additives (salts, sodium dodecyl sulfate, etc.). The different types of data available from combining these complementary surface analytical methods provide new information essential to understanding aspects of DNA on surfaces. Such information is important for designing and improving new technologies that employ nucleic acids on surfaces, including bioassays, diagnostics, molecular computing, self-assembling materials, and miniaturized separations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pirrung MC. How to make a DNA chip. Angew Chem Int Edit. 2002;41:1277–89.

    Article  Google Scholar 

  2. Wang J. From DNA biosensors to gene chips. Nucleic Acids Res. 2000;28:3011–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sanchez-Carbayo MS, Bornmann W, Cordon-Cardo C. DNA microchips: technical and practical considerations. Curr Org Chem. 2000;4:945–71.

    Article  CAS  Google Scholar 

  4. Debouck C, Goodfellow PN. DNA microarrays in drug discovery and development. Nat Genet. 1999;21:48–50.

    Article  CAS  PubMed  Google Scholar 

  5. Churchill GA. Fundamentals of experimental design for cDNA microarrays. Nat Genet. 2002;32:490–5.

    Article  CAS  PubMed  Google Scholar 

  6. Yu DH, Blankert B, Vire JC, Kauffmann JM. Biosensors in drug discovery and drug analysis. Anal Lett. 2005;38:1687–701.

    Article  CAS  Google Scholar 

  7. Zhai JH, Cui H, Yang RF. DNA based biosensors. Biotechnol Adv. 1997;15:43–58.

    Article  CAS  PubMed  Google Scholar 

  8. Rivas GA, Pedano ML, Ferreyra NF. Electrochemical biosensors for sequence-specific DNA detection. Anal Lett. 2005;38:2653–703.

    Article  CAS  Google Scholar 

  9. Bloomfield VA, Crothers DM, Tinoco I. Nucleic acids structures, properties, and functions. Sausalito: University Science Books; 2000.

    Google Scholar 

  10. Huang E, Zhou FM, Deng L. Studies of surface coverage and orientation of DNA molecules immobilized onto preformed alkanethiol self-assembled monolayers. Langmuir. 2000;16:3272–80.

    Article  CAS  Google Scholar 

  11. Wolf LK, Fullenkamp DE, Georgiadis RM. Quantitative angle-resolved SPR imaging of DNA-DNA and DNA-drug kinetics. J Am Chem Soc. 2005;127:17453–9.

    Article  CAS  PubMed  Google Scholar 

  12. Piliarik M, Vaisocherova H, Homola J. A new surface plasmon resonance sensor for high-throughput screening applications. Biosens Bioelectron. 2005;20:2104–10.

    Article  CAS  PubMed  Google Scholar 

  13. Shumaker-Parry JS, Aebersold R, Campbell CT. Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal Chem. 2004;76(7):2071–82.

    Article  CAS  PubMed  Google Scholar 

  14. Wark AW, Lee HJ, Corn RM. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem. 2005;77:3904–7.

    Article  CAS  PubMed  Google Scholar 

  15. Lazerges M, Perrot H, Zeghib N, Antoine E, Compere C. In situ QCM DNA-biosensor probe modification. Sens Actuator B-Chem. 2006;120:329–37.

    Article  CAS  Google Scholar 

  16. Su XD, Wu YJ, Knoll W. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens Bioelectron. 2005;21:719–26.

    Article  CAS  PubMed  Google Scholar 

  17. He PA, Xu Y, Fang YZ. A review: electrochemical DNA biosensors for sequence recognition. Anal Lett. 2005;38:2597–623.

    Article  CAS  Google Scholar 

  18. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105:1103–69.

    Article  CAS  PubMed  Google Scholar 

  19. Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc. 1997;119:8916–20.

    Article  CAS  Google Scholar 

  20. Moses S, Brewer SH, Lowe LB, Lappi SE, Gilvey LBG, Sauthier M, et al. Characterization of single- and double-stranded DNA on gold surfaces. Langmuir. 2004;20:11134–40.

    Article  CAS  PubMed  Google Scholar 

  21. Levicky R, Herne TM, Tarlov MJ, Satija SK. Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc. 1998;120:9787–92.

    Article  CAS  Google Scholar 

  22. Peterlinz KA, Georgiadis RM, Herne TM, Tarlov MJ. Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J Am Chem Soc. 1997;119:3401–2.

    Article  CAS  Google Scholar 

  23. Lee C-Y, Gamble LJ, Grainger DW, Castner DG. Mixed DNA/Oligo(ethylene glycol) functionalized gold surfaces improve DNA hybridization in complex media. Biointerphases. 2006;1:82–92.

    Article  CAS  PubMed  Google Scholar 

  24. Lee C-Y, Gong P, Harbers GM, Grainger DW, Castner DG, Gamble LJ. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements. Anal Chem. 2006;78:3316–25.

    Article  CAS  PubMed  Google Scholar 

  25. Gong P, Lee C-Y, Gamble LJ, Castner DG, Grainger DW. Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by SPR and 32P radiometric assay. Anal Chem. 2006;78:3326–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Peterson AW, Heaton RJ, Georgiadis RM. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 2001;29:5163–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Stohr J. NEXAFS spectroscopy, vol. 25. New York: Springer; 1992.

    Book  Google Scholar 

  28. Hahner G, Kinzler M, Thummler C, Woll C, Grunze M. Structure of self-organizing organic films – a near edge X-ray absorption fine-structure investigation of thiol layers adsorbed on gold. J Vac Sci Technol A-Vac Surf Films. 1992;10:2758–63.

    Article  Google Scholar 

  29. Gamble LJ, Ravel B, Fischer DA, Castner DG. Surface structure and orientation of PTFE films determined by experimental and FEFF8-calculated NEXAFS spectra. Langmuir. 2002;18:2183–9.

    Article  CAS  Google Scholar 

  30. Nagayama K, Sei M, Mitsumoto R, Ito E, Araki T, Ishii H, et al. Polarized NEXAFS studies on the mechanical rubbing effect of poly(tetrafluoroethylene) oligomer and its model compound. J Electron Spectrosc Relat Phenom. 1996;78:375–8.

    Article  CAS  Google Scholar 

  31. Ziegler C, Schedelniedrig T, Beamson G, Clark DT, Salaneck WR, Sotobayashi H, et al. X-ray-absorption study of highly oriented poly(Tetrafluoroethylene) thin-films. Langmuir. 1994;10:4399–402.

    Article  CAS  Google Scholar 

  32. Castner DG, Lewis KB, Fischer DA, Ratner BD, Gland JL. Determination of surface-structure and orientation of polymerized tetrafluoroethylene films by near-edge X-ray absorption fine-structure, X-ray photoelectron-spectroscopy, and static secondary ion mass-spectrometry. Langmuir. 1993;9:537–42.

    Article  CAS  Google Scholar 

  33. Fujii K, Akamatsu K, Muramatsu Y, Yokoya A. X-ray absorption near edge structure of DNA bases around oxygen and nitrogen K-edge. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms. 2003;199:249–54.

    Article  CAS  Google Scholar 

  34. Fujii K, Akamatsu K, Yokoya A. Near-edge X-ray absorption fine structure of DNA nucleobases thin film in the nitrogen and oxygen K-edge region. J Phys Chem B. 2004;108:8031–5.

    Article  CAS  Google Scholar 

  35. Furukawa M, Fujisawa H, Katano S, Ogasawara H, Kim Y, Komeda T, et al. Geometrical characterization of pyrimidine base molecules adsorbed on Cu(110) surfaces: XPS and NEXAFS studies. Surf Sci. 2003;532:261–6.

    Article  Google Scholar 

  36. Kirtley SM, Mullins OC, Chen J, Vanelp J, George SJ, Chen CT, et al. Nitrogen chemical-structure in DNA and related molecules by X-ray absorption-spectroscopy. Biochim Et Biophys Acta. 1992;1132:249–54.

    Article  CAS  Google Scholar 

  37. Samuel NT, Lee C-YL, Gamble LJ, Fisher DA, Castner DG. NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers. J Electron Spectrosc Relat Phenom. 2006;152:134–42.

    Article  CAS  Google Scholar 

  38. Petrovykh DY, Perez-Dieste V, Opdahl A, Kimura-Suda H, Sullivan JM, Tarlov MJ, et al. Nucleobase orientation and ordering in films of single-stranded DNA on gold. J Am Chem Soc. 2006;128:2–3.

    Article  CAS  PubMed  Google Scholar 

  39. Crain JN, Kirakosian A, Lin JL, Gu YD, Shah RR, Abbott NL, et al. Functionalization of silicon step arrays II: molecular orientation of alkanes and DNA. J Appl Phys. 2001;90:3291–5.

    Article  CAS  Google Scholar 

  40. Brockman JM, Frutos AG, Corn RM. A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging. J Am Chem Soc. 1999;121:8044–51.

    Article  CAS  Google Scholar 

  41. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem. 2001;73:1–7.

    Article  CAS  PubMed  Google Scholar 

  42. Smith EA, Wanat MJ, Cheng YF, Barreira SVP, Frutos AG, Corn RM. Formation, spectroscopic characterization, and application of sulfhydryl-terminated alkanethiol monolayers for the chemical attachment of DNA onto gold surfaces. Langmuir. 2001;17:2502–7.

    Article  CAS  Google Scholar 

  43. Shumaker-Parry JS, Zareie MH, Aebersold R, Campbell CT. Microspotting streptavidin and double-stranded DNA Arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy. Anal Chem. 2004;76(4):918–29.

    Article  CAS  PubMed  Google Scholar 

  44. Peterson AW, Heaton RJ, Georgiadis R. Kinetic control of hybridization in surface immobilized DNA monolayer films. J Am Chem Soc. 2000;122:7837–8.

    Article  CAS  Google Scholar 

  45. Peterson AW, Wolf LK, Georgiadis RM. Hybridization of mismatched or partially matched DNA at surfaces. J Am Chem Soc. 2002;124:14601–7.

    Article  CAS  PubMed  Google Scholar 

  46. Xia N, Shumaker-Parry JS, Zareie MH, Campbell CT, Castner DG. A streptavidin linker layer that functions after drying. Langmuir. 2004;20:3710–6.

    Article  CAS  PubMed  Google Scholar 

  47. Green RJ, Frazier RA, Shakesheff KM, Davies MC, Roberts CJ, Tendler SJB. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials. 2000;21:1823–35.

    Article  CAS  PubMed  Google Scholar 

  48. Pavey KD, Olliff CJ. SPR analysis of the total reduction of protein adsorption to surfaces coated with mixtures of long- and short-chain polyethylene oxide block copolymers. Biomaterials. 1999;20:885–90.

    Article  CAS  PubMed  Google Scholar 

  49. Green RJ, Davies MC, Roberts CJ, Tendler SJB. Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials. 1999;20:385–91.

    Article  CAS  PubMed  Google Scholar 

  50. Morgan H, Taylor DM. A surface-plasmon resonance immunosensor based on the streptavidin biotin complex. Biosens Bioelectron. 1992;7:405–10.

    Article  CAS  PubMed  Google Scholar 

  51. Daniels PB, Deacon JK, Eddowes MJ, Pedley DG. Surface-plasmon resonance applied to immunosensing. Sensor Actuator. 1988;15:11–8.

    Article  CAS  Google Scholar 

  52. Gong P, Grainger DW. Microarrays: methods and protocols. 2nd ed. Totowa: Humana Press; 2007.

    Google Scholar 

  53. Grainger DW, Greef CA, Gong P, Lochhead MJ. Microarrays: methods and protocols. 2nd ed. Totowa: Humana Press; 2007.

    Google Scholar 

  54. Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel cemical synthesis. Science. 1991;251:767–73.

    Article  CAS  PubMed  Google Scholar 

  55. Gong P, Harbers GM, Grainger DW. Multi-technique comparison of immobilized and hybridized oligonucleotide surface density on commercial amine-reactive microarray slides. Anal Chem. 2006;78:2342–51.

    Article  CAS  PubMed  Google Scholar 

  56. Dufva M. Fabrication of high quality microarrays. Biomol Eng. 2005;22:173–84.

    Article  CAS  PubMed  Google Scholar 

  57. Ramakrishnan R, Dorris D, Lublinsky A, Nguyen A, Domanus M, Prokhorova A, et al. An assessment of Motorola CodeLink (TM) microarray performance for gene expression profiling applications. Nucleic Acids Res. 2002;30:e30.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Shen G, Anand MFG, Levicky R. X-ray photoelectron spectroscopy and infrared spectroscopy study of maleimide-activated supports for immobilization of oligodeoxyribonucleotides. Nucleic Acids Res. 2004;32:5973–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Lee CY, Canavan HE, Gamble LJ, Castner DG. Evidence of impurities in thiolated single-stranded DNA oligomers and their effect on DNA self-assembly on gold. Langmuir. 2005;21:5134–41.

    Article  CAS  PubMed  Google Scholar 

  60. May CJ, Canavan HE, Castner DG. Quantitative X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterization of the components in DNA. Anal Chem. 2004;76:1114–22.

    Article  CAS  PubMed  Google Scholar 

  61. Petrovykh DY, Kimura-Suda H, Whitman LJ, Tarlov MJ. Quantitative analysis and characterization of DNA immobilized on gold. J Am Chem Soc. 2003;125:5219–26.

    Article  CAS  PubMed  Google Scholar 

  62. Walton J, Fairley N. Characterisation of the Kratos Axis Ultra with spherical mirror analyser for XPS imaging. Surf Interface Anal. 2006;38:1230–5.

    Article  CAS  Google Scholar 

  63. Walton J, Fairley N. Transmission-function correction for XPS spectrum imaging. Surf Interface Anal. 2006;38:388–91.

    Article  CAS  Google Scholar 

  64. Vohrer U, Blomfield C, Page S, Roberts A. Quantitative XPS imaging – new possibilities with the delay-line detector. Appl Surf Sci. 2005;252:61–5.

    Article  CAS  Google Scholar 

  65. Walton J, Fairley N. Quantitative surface chemical-state microscopy by x-ray photoelectron spectroscopy. Surf Interface Anal. 2004;36:89–91.

    Article  CAS  Google Scholar 

  66. Belu AM, Yang ZP, Aslami R, Chilkoti A. Enhanced TOF-SIMS imaging of a micropatterned protein by stable isotope protein labeling. Anal Chem. 2001;73:143–50.

    Article  CAS  PubMed  Google Scholar 

  67. Yang ZP, Belu AM, Liebmann-Vinson A, Sugg H, Chilkoti A. Molecular imaging of a micropatterned biological ligand on an activated polymer surface. Langmuir. 2000;16:7482–92.

    Article  CAS  Google Scholar 

  68. Belu AM, Graham DJ, Castner DG. Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials. 2003;24:3635–53.

    Article  CAS  PubMed  Google Scholar 

  69. Wagner MS, Graharn DJ, Castner DG. Simplifying the interpretation of ToF-SIMS spectra and images using careful application of multivariate analysis. Appl Surf Sci. 2006;252(19):6575–81.

    Article  CAS  Google Scholar 

  70. Tyler BJ. Multivariate statistical image processing for molecular specific imaging in organic and bio-systems. Appl Surf Sci. 2006;252(19):6875–82.

    Article  CAS  Google Scholar 

  71. Lee CY, Harbers GM, Grainger DW, Gamble LJ, Castner DG. Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of DNA microarrays. J Am Chem Soc. 2007;129:9429–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Heaton RJ, Peterson AW, Georgiadis RM. Electrostatic surface plasmon resonance: direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches. Proc Natl Acad Sci U S A. 2001;98:3701–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Hellweg S, Jacob A, Hoheisel JD, Grehl T, Arlinghaus HF. Mass spectrometric characterization of DNA microarrays as a function of primary ion species. Appl Surf Sci. 2006;252:6742–5.

    Article  CAS  Google Scholar 

  74. Hashimoto H, Nakamura K, Takase H, Okamoto T, Yamamoto N. Quantitative TOF-SIMS imaging of DNA microarrays produced by bubble jet printing technique and the role of TOF-SIMS in life science industry. Appl Surf Sci. 2004;231–2:385–91.

    Article  Google Scholar 

  75. Moiseev L, Unlu MS, Swan AK, Goldberg BB, Cantor CR. DNA conformation on surfaces measured by flourescence self-interference. Proc Natl Acad Sci U S A. 2006;103:2623–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from NESAC/BIO (NIH grant no. EB-002027) and NIH grant no. EB-001473. NEXAFS studies were performed at the NSLS, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Science and Division of Chemical Sciences. Dr. D. A. Fischer is thanked for his expert technical assistance with the NEXAFS experiments. Dr. D. Graham is thanked for assistance with PCA. We also thank Dr. S. Golledge for expert technical assistance with the ToF-SIMS experiments performed at the Center for Advanced Materials Characterization in Oregon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Castner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, CY., Gamble, L.J., Harbers, G.M., Gong, P., Grainger, D.W., Castner, D.G. (2014). Multi-technique Characterization of DNA-Modified Surfaces for Biosensing and Diagnostic Applications. In: Smentkowski, V. (eds) Surface Analysis and Techniques in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-01360-2_11

Download citation

Publish with us

Policies and ethics