Skip to main content

Stability of Linear Problems: Joint Spectral Radius of Sets of Matrices

  • Chapter
  • First Online:
Current Challenges in Stability Issues for Numerical Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2082))

Abstract

It is well known that the stability analysis of step-by-step numerical methods for differential equations often reduces to the analysis of linear difference equations with variable coefficients. This class of difference equations leads to a family \(\mathcal{F}\) of matrices depending on some parameters and the behaviour of the solutions depends on the convergence properties of the products of the matrices of \(\mathcal{F}\). To date, the techniques mainly used in the literature are confined to the search for a suitable norm and for conditions on the parameters such that the matrices of \(\mathcal{F}\) are contractive in that norm. In general, the resulting conditions are more restrictive than necessary. An alternative and more effective approach is based on the concept of joint spectral radius of the family \(\mathcal{F}\), \(\rho (\mathcal{F})\). It is known that all the products of matrices of \(\mathcal{F}\) asymptotically vanish if and only if \(\rho (\mathcal{F}) < 1\). The aim of this chapter is that to discuss the main theoretical and computational aspects involved in the analysis of the joint spectral radius and in applying this tool to the stability analysis of the discretizations of differential equations as well as to other stability problems. In particular, in the last section, we present some recent heuristic techniques for the search of optimal products in finite families, which constitutes a fundamental step in the algorithms which we discuss. The material we present in the final section is part of an original research which is in progress and is still unpublished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Ando, M.-H. Shih, Simultaneous contractibility. SIAM J. Matrix Anal. Appl. 19, 487–498 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. N.E. Barabanov, Lyapunov indicator for discrete inclusions, I–III. Autom. Rem. Contr. 49, 152–157 (1988)

    MathSciNet  MATH  Google Scholar 

  3. M.A. Berger, Y. Wang, Bounded semigroups of matrices. Lin. Algebra Appl. 166, 21–27 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9 (SIAM, Philadelphia, 1994), xx+340 pp.

    Google Scholar 

  5. J. Berstel, Growth of repetition-free words – A review. Theor. Comput. Sci. 340, 280–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. V.D. Blondel, Y. Nesterov, Computationally efficient approximations of the joint spectral radius. SIAM J. Matrix Anal. Appl. 27, 256–272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. V.D. Blondel, J. Theys, A.A. Vladimirov, An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Anal. Appl. 24, 963–970 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. V.D. Blondel, Y. Nesterov, J. Theys, On the accuracy of the ellipsoid norm approximation of the joint spectral radius. Lin. Algebra Appl. 394, 91–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. V.D. Blondel, R. Jungers, V.Y. Protasov, On the complexity of computing the capacity of codes that avoid forbidden difference patterns. IEEE Trans. Inf. Theor. 52, 5122–5127 (2006)

    Article  MathSciNet  Google Scholar 

  10. T. Bousch, J. Mairesse, Asymptotic height optimization for topical IFS, Tetris heaps and the finiteness conjecture. J. Am. Math. Soc. 15, 77–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004), xiv+716 pp.

    Google Scholar 

  12. A. Cicone, N. Guglielmi, S. Serra-Capizzano, M. Zennaro, Finiteness property of pairs of 2 × 2 sign-matrices via real extremal polytope norms. Lin. Algebra Appl. 432, 796–816 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61 (SIAM, Philadelphia, 1992), xx+357 pp.

    Google Scholar 

  14. I. Daubechies, J. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals. SIAM. J. Math. Anal. 23, 1031–1079 (1992)

    Google Scholar 

  15. I. Daubechies, J.C. Lagarias, Sets of matrices all infinite products of which converge. Lin. Algebra Appl. 161, 227–263 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Dubuc, Interpolation through an iterative scheme. J. Math. Anal. Appl. 114, 185–204 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Elsner, The generalized spectral-radius theorem: An analytic-geometric proof. Lin. Algebra Appl. 220, 151–159 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Gripenberg, Computing the joint spectral radius. Lin. Algebra Appl. 234, 43–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Guglielmi, V.Y. Protasov, Exact computation of joint spectral characteristics of linear operators. Found. Comput. Math. 13, 37–97 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Guglielmi, M. Zennaro, On the asymptotic properties of a family of matrices. Lin. Algebra Appl. 322, 169–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Guglielmi, M. Zennaro, On the zero-stability of variable stepsize multistep methods: The spectral radius approach. Numer. Math. 88, 445–458 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Guglielmi, M. Zennaro, On the limit products of a family of matrices. Lin. Algebra Appl. 362, 11–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Guglielmi, M. Zennaro, Balanced complex polytopes and related vector and matrix norms. J. Convex Anal. 14, 729–766 (2007)

    MathSciNet  MATH  Google Scholar 

  24. N. Guglielmi, M. Zennaro, An algorithm for finding extremal polytope norms of matrix families. Lin. Algebra Appl. 428, 2265–2282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Guglielmi, M. Zennaro, Finding extremal complex polytope norms for families of real matrices. SIAM J. Matrix Anal. Appl. 31, 602–620 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Guglielmi, M. Zennaro, On the asymptotic regularity of a family of matrices. Lin. Algebra Appl. 436, 2093–2104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Guglielmi, F. Wirth, M. Zennaro, Complex polytope extremality results for families of matrices. SIAM J. Matrix Anal. Appl. 27, 721–743 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Guglielmi, C. Manni, D. Vitale, Convergence analysis of C 2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas. Lin. Algebra Appl. 434, 784–902 (2011)

    MathSciNet  Google Scholar 

  29. L. Gurvits, Stability of discrete linear inclusions. Lin. Algebra Appl. 231, 47–85 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. K.G. Hare, N. Sidorov, I. Morris, J. Theys, An explicit counterexample to the Lagarias-Wang finiteness conjecture. Adv. Math. 226, 4667–4701 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Hechler, B. Mößner, U. Reif, C 1-continuity of the generalized four-point scheme. Lin. Algebra Appl. 430, 3019–3029 (2009)

    Article  MATH  Google Scholar 

  32. R. Jungers, V. Blondel, On the finiteness properties for rational matrices. Lin. Algebra Appl. 428, 2283–2295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. R.M. Jungers, The Joint Spectral Radius: Theory and Applications. Lecture Notes in Control and Information Sciences, vol. 385 (Springer, Berlin, 2009), xiv+144 pp.

    Google Scholar 

  34. R.M. Jungers, V.Y. Protasov, Counterexamples to the complex polytope extremality conjecture. SIAM J. Matrix Anal. Appl. 31, 404–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. R.M. Jungers, V.Y. Protasov, V.D. Blondel, Overlap-free words and spectra of matrices. Theor. Comput. Sci. 410, 3670–3684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. V.S. Kozyakin, On the computational aspects of the theory of joint spectral radius. Dokl. Math. 80, 487–491 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.C. Lagarias, Y. Wang, The finiteness conjecture for the generalized spectral radius of a set of matrices. Lin. Algebra Appl. 214, 17–42 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Maesumi, Optimum unit ball for joint spectral radius: An example from four-coefficient MRA, in Approximation Theory VIII: Wavelets and Multilevel Approximation, ed. by C.K. Chui, L.L. Schumaker, vol. 2 (World Scientific, Singapore, 1995), pp. 267–274

    Google Scholar 

  39. M. Maesumi, Calculating joint spectral radius of matrices and Hölder exponent of wavelets, in Approximation Theory IX, ed. by C.K. Chui, L.L. Schumaker (World Scientific, Singapore, 1998), pp. 1–8

    Google Scholar 

  40. O. Mason, R.N. Shorten, Quadratic and copositive Lyapunov functions and the stability of positive switched linear systems, in Proceedings of the American Control Conference (ACC 2007) (2007), pp. 657–662

    Google Scholar 

  41. B.E. Moision, A. Orlitsky, P.H. Siegel, On codes that avoid specified differences. IEEE Trans. Inf. Theor. 47, 433-422, (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. P.A. Parrilo, A. Jadbabaie, Approximation of the joint spectral radius using sum of squares. Lin. Algebra Appl. 428, 2385–2402 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. V.Y. Protasov, The joint spectral radius and invariant sets of linear operators. Fundam. Prikl. Mat. 2(1), 205–231 (1996)

    MathSciNet  MATH  Google Scholar 

  44. V.Y. Protasov, The generalized spectral radius. A geometric approach. Izv. Math. 61, 995–1030 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. M.H. Shih, Simultaneous Schur stability. Lin. Algebra Appl. 287, 323–336 (1999)

    Article  MATH  Google Scholar 

  46. M.H. Shih, J.W. Wu, C.T. Pang, Asymptotic stability and generalized Gelfand spectral radius formula. Lin. Algebra Appl. 252, 61–70 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King, Stability criteria for switched and hybrid systems. SIAM Rev. 49, 545–592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. G.C. Rota, G. Strang, A note on the joint spectral radius. Kon. Nederl. Acad. Wet. Proc. 63, 379–381 (1960)

    MathSciNet  MATH  Google Scholar 

  49. G. Strang, The joint spectral radius, Commentary by Gilbert Strang. Collected works of Gian-Carlo Rota (2000)

    Google Scholar 

  50. J.N. Tsitsiklis, V.D. Blondel, The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate. Math. Contr. Signals Syst. 10, 31–40 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. C. Vagnoni, M. Zennaro, The analysis and the representation of balanced complex polytopes in 2D. Found. Comput. Math. 9, 259–294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. J.S. Vandergraft, Spectral properties of matrices which have invariant cones. SIAM J. Appl. Math. 16, 1208–1222 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  53. L. Villemoes, Wavelet analysis of refinement equations. SIAM J. Math. Anal. 25, 1433–1460 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  54. A.N. Willson, A stability criterion for nonautonomous difference equations with application to the design of a digital FSK oscillator. IEEE Trans. Circ. Syst. 21, 124–130 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank C.I.M.E. for the excellent support in the organization of the Summer School and INdAM-GNCS for partial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Guglielmi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guglielmi, N., Zennaro, M. (2014). Stability of Linear Problems: Joint Spectral Radius of Sets of Matrices. In: Current Challenges in Stability Issues for Numerical Differential Equations. Lecture Notes in Mathematics(), vol 2082. Springer, Cham. https://doi.org/10.1007/978-3-319-01300-8_5

Download citation

Publish with us

Policies and ethics