Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2082))

Abstract

Nonlinear waves are a common feature in many applications such as the spread of epidemics, electric signaling in nerve cells, and excitable chemical reactions. Mathematical models of such systems lead to time-dependent PDEs of parabolic, hyperbolic or mixed type. Common types of such waves are fronts and pulses in one, rotating and spiral waves in two, and scroll waves in three space dimensions. These patterns may be viewed as relative equilibria of an equivariant evolution equation where equivariance is caused by the action of a Lie group. Typical examples of such actions are rotations, translations or gauge transformations. The aim of the lectures is to give an overview of problems related to the theoretical and numerical analysis of such dynamic patterns. One major theoretical topic is to prove nonlinear stability and relate it to linearized stability determined by the spectral behavior of linearized operators. The numerical part focusses on the freezing method which uses equivariance to transform the given PDE into a partial differential algebraic equation (PDAE). Solving these PDAEs generates moving coordinate systems in which the above-mentioned patterns become stationary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ahuja, I.G. Kevrekidis, C.W. Rowley, Template-based stabilization of relative equilibria in systems with continuous symmetry. J. Nonlinear Sci. 17, 109–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Alexander, R. Gardner, C.K.R.T. Jones, A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  3. H.W. Alt, Lineare Funktionalanalysis, 3rd edn. (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  4. W. Arendt, C.J.K. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, vol. 96 (Birkhäuser, Basel, 2001)

    Google Scholar 

  5. J.M. Arrieta, M. López-Fernández, E. Zuazua, Approximating travelling waves by equilibria of nonlocal equations. Asymptot. Anal. 78, 145–186 (2012)

    MathSciNet  MATH  Google Scholar 

  6. D. Barkley, A model for fast computer simulation of waves in excitable media. Physica D 49, 61–70 (1991)

    Article  Google Scholar 

  7. P.W. Bates, C.K.R.T. Jones, Invariant manifolds for semilinear partial differential equations, in Dynamics Reported. Dynam. Report. Ser. Dynam. Systems Appl. vol. 2 (Wiley, Chichester, 1989), pp. 1–38

    Google Scholar 

  8. W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10(3), 379–405 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. W.-J. Beyn, J. Lorenz, Stability of traveling waves: Dichotomies and eigenvalue conditions on finite intervals. Numer. Funct. Anal. Optim. 20, 201–244 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. W.-J. Beyn, J. Lorenz, Nonlinear stability of rotating patterns. Dyn. PDEs 5, 349–400 (2008)

    MathSciNet  MATH  Google Scholar 

  11. W.-J. Beyn, J. Rottmann-Matthes, Resolvent estimates for boundary value problems on large intervals via the theory of discrete approximations. Numer. Funct. Anal. Optim. 28(5–6), 603–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. W.-J. Beyn, V. Thümmler, Freezing solutions of equivariant evolution equations. SIAM J. Appl. Dyn. Syst. 3(2), 85–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. W.-J. Beyn, V. Thümmler, Phase conditions, symmetries, and PDE continuation, in Numerical Continuation Methods for Dynamical Systems, ed. by B. Krauskopf, H. Osinga, J. Galan-Vioque. Series in Complexity (Springer, Berlin, 2007), pp. 301–330

    Google Scholar 

  14. W.-J. Beyn, V. Thümmler, Dynamics of patterns in nonlinear equivariant PDEs. GAMM Mitteilungen 32(1), 7–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. W.-J. Beyn, S. Selle, V. Thümmler, Freezing multipulses and multifronts. SIAM J. Appl. Dyn. Syst. 7, 577–608 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. L.Q. Brin, Numerical testing of the stability of viscous shock waves. Math. Comp. 70, 1071–1088 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. L.Q. Brin, K. Zumbrun, Analytically varying eigenvectors and the stability of viscous shock waves. Math. Contemp. 22, 19–32 (2002)

    MathSciNet  MATH  Google Scholar 

  18. C. Cattaneo, Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  19. P. Chossat, R. Lauterbach, Methods in Equivariant Bifurcations and Dynamical Systems. Advanced Series in Nonlinear Dynamics, vol. 15 (World Scientific, Singapore, 2000)

    Google Scholar 

  20. W.A. Coppel, Dichotomies in Stability Theory. Lecture Notes in Mathematics, vol. 629 (Springer, Berlin, 1978)

    Google Scholar 

  21. L.-C. Crasovan, B.A. Malomed, D. Mihalache, Spinning solitons in cubic-quintic nonlinear media. Pramana J. Phys. 57, 1041–1059 (2001)

    Article  Google Scholar 

  22. J.W. Demmel, L. Dieci, M.J. Friedman, Computing connecting orbits via an improved algorithm for continuing invariant subspaces. SIAM J. Sci. Comput. 22(1), 81–94 (electronic) (2000)

    Google Scholar 

  23. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics (Springer, Berlin, 2000)

    Google Scholar 

  24. J.W. Evans, Nerve axon equations. I. Linear approximations. Indiana Univ. Math. J. 21, 877–885 (1971/1972)

    Google Scholar 

  25. J.W. Evans, Nerve axon equations. II. Stability at rest. Indiana Univ. Math. J. 22, 75–90 (1972/1973)

    Google Scholar 

  26. J.W. Evans, Nerve axon equations. III. Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–593 (1972/1973)

    Google Scholar 

  27. J.W. Evans, Nerve axon equations. IV. The stable and the unstable impulse. Indiana Univ. Math. J. 24(12), 1169–1190 (1974/1975)

    Google Scholar 

  28. M.J. Field, Dynamics and Symmetry. ICP Advanced Texts in Mathematics, vol. 3 (Imperial College Press, London, 2007)

    Google Scholar 

  29. P.C. Fife, J.B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal. 65, 335–361 (1977)

    MathSciNet  MATH  Google Scholar 

  30. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  31. A.J. Foulkes, V.N. Biktashev, Riding a spiral wave; numerical simulation of spiral waves in a comoving frame of reference. Phys. Rev. E (3) 81, 046702 (2010)

    Google Scholar 

  32. M.J. Friedman, E.J. Doedel, Numerical computation and continuation of invariant manifolds connecting fixed points. SIAM J. Numer. Anal. 28(3), 789–808 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Froehlich, P. Cvitanović, Reduction of continuous symmetries of chaotic flows by the method of slices. Comm. Nonlinear Sci. Numer. Simulat. 17, 2074–2084 (2012)

    Article  MATH  Google Scholar 

  34. A. Ghazaryan, Y. Latushkin, S. Schecter, Stability of traveling waves for degenerate systems of reaction diffusion equations. Indiana Univ. Math. J. 60(2), 443–472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. I.C. Gohberg, M.G. Krěin, Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18 (American Mathematical Society, Providence, 1969)

    Google Scholar 

  36. M. Golubitsky, I. Stewart, The Symmetry Perspective. Progress in Mathematics, vol. 20 (Birkhäuser, Basel, 2002)

    Google Scholar 

  37. S. Hastings, On travelling wave solutions of the Hodgkin-Huxley equations. Arch. Ration. Mech. Anal. 60, 229–257 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840 (Springer, Berlin, 1981)

    Google Scholar 

  39. S. Hermann, G.A. Gottwald, The large core limit of spiral waves in excitable media: A numerical approach. SIAM J. Appl. Dyn. Syst. 9, 536–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  41. J. Humpherys, K. Zumbrun, An efficient shooting algorithm for Evans function calculations in large systems. Physica D 220, 116–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Humpherys, B. Sandstede, K. Zumbrun, Efficient computation of analytic bases in Evans function analysis of large systems. Numer. Math. 103, 631–642 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Keener, J. Sneyd, Mathematical Physiology. I: Cellular Physiology, 2nd edn. (Springer, New York, 2009)

    Google Scholar 

  44. Y.J. Kim, A.E. Tzavaras, Diffusive N-waves and metastability in the Burgers equation. SIAM J. Math. Anal. 33(3), 607–633 (electronic) (2001)

    Google Scholar 

  45. G. Kreiss, H.O. Kreiss, N.A. Petersson, On the convergence of solutions of nonlinear hyperbolic-parabolic systems. SIAM J. Numer. Anal. 31(6), 1577–1604 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. V. Ledoux, S. Malham, V. Thümmler, Grassmannian spectral shooting. Math. Comp. 79, 1585–1619 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Malham, J. Niesen, Evaluating the Evans function: Order reduction in numerical methods. Math. Comp. 261, 159–179 (2008)

    Article  MathSciNet  Google Scholar 

  48. R.M. Miura, Accurate computation of the stable solitary waves for the FitzHugh-Nagumo equations. J. Math. Biol. 13, 247–269 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  49. K.J. Palmer, Exponential dichotomies and transversal homoclinic points. J. Differ. Equat. 55(2), 225–256 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (2. corr. print). Applied Mathematical Sciences, vol. 44 (Springer, Berlin, 1983)

    Google Scholar 

  51. R.L. Pego, M.I. Weinstein, Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. Lond. Ser. A 340, 47–94 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Rottmann-Matthes, Computation and Stability of Patterns in Hyperbolic-Parabolic Systems. PhD thesis, Shaker Verlag, Aachen (2010)

    Google Scholar 

  53. J. Rottmann-Matthes, Linear stability of traveling waves in first-order hyperbolic PDEs. J. Dyn. Differ. Equat. 23(2), 365–393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Rottmann-Matthes, Stability and freezing of nonlinear waves in first order hyperbolic PDEs. J. Dyn. Differ. Equat. 24(2), 341–367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Rottmann-Matthes, Stability and freezing of waves in non-linear hyperbolic-parabolic systems. IMA J. Appl. Math. 77(3), 420–429 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. J. Rottmann-Matthes, Stability of parabolic-hyperbolic traveling waves. Dyn. Part. Differ. Equat. 9(1), 29–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. C.W. Rowley, I.G. Kevrekidis, J.E. Marsden, K. Lust, Reduction and reconstruction for self-similar dynamical systems. Nonlinearity 16(4), 1257–1275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. K.M. Saad, A.M. El-shrae, Numerical methods for computing the Evans function. ANZIAM J. Electron. Suppl. 52 (E), E76–E99 (2010)

    Google Scholar 

  59. B. Sandstede, Stability of traveling waves, in Handbook of Dynamical Systems, ed. by B. Fiedler, vol. 2 (North Holland, Amsterdam, 2002), pp. 983–1055

    Google Scholar 

  60. B. Sandstede, A. Scheel, Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D 145(3–4), 233–277 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  61. B. Sandstede, A. Scheel, C. Wulff, Dynamics of spiral waves on unbounded domains using center manifold reductions. J. Differ. Equat. 141, 122–149 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Scheel, J.D. Wright, Colliding dissipative pulses – the shooting manifold. J. Differ. Equat. 245(1), 59–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Selle, Decomposition and Stability of Multifronts and Multipulses. PhD thesis, University of Bielefeld, Bielefeld (2009)

    Google Scholar 

  64. G.W. Stewart, J.G. Sun, Matrix Perturbation Theory. Computer Science and Scientific Computing (Academic, Boston, 1990)

    MATH  Google Scholar 

  65. V. Thümmler, Numerical Analysis of the Method of Freezing Traveling Waves. PhD thesis, Bielefeld University (2005)

    Google Scholar 

  66. V. Thümmler, Numerical approximation of relative equilibria for equivariant PDEs. SIAM J. Numer. Anal. 46, 2978–3005 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. V. Thümmler, The effect of freezing and discretization to the asymptotic stability of relative equilibria. J. Dyn. Differ. Equat. 20, 425–477 (2008)

    Article  MATH  Google Scholar 

  68. A. Volpert, V.A. Volpert, V.A. Volpert, Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs, vol. 140 (AMS, Providence, 1994)

    Google Scholar 

  69. J.D. Wright, Separating dissipative pulses: The exit manifold. J. Dyn. Differ. Equat. 21(2), 315–328 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Jürgen Beyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beyn, WJ., Otten, D., Rottmann-Matthes, J. (2014). Stability and Computation of Dynamic Patterns in PDEs. In: Current Challenges in Stability Issues for Numerical Differential Equations. Lecture Notes in Mathematics(), vol 2082. Springer, Cham. https://doi.org/10.1007/978-3-319-01300-8_3

Download citation

Publish with us

Policies and ethics